Return to search

Role of E6-Associated Protein (E6-AP) in Mammary Gland Development and Tumorigenesis

E6-associated protein (E6-AP), which was originally identified as an ubiquitin-protein ligase, also functions as a co-activator that enhances the hormone-dependent transactivation of estrogen (ER) and progesterone (PR) receptors. To investigate the in vivo role of E6-AP in mammary gland development, we generated transgenic mouse lines that specifically overexpress either wild-type human E6-AP (E6-APWT) or the ubiquitin-protein ligase defective mutant E6-AP (E6-APC833S) in the mammary gland. Here we show that overexpression of E6-APWT results in impaired mammary gland development. In contrast, overexpression of E6-APC833S or loss of E6-AP (E6-APKO) increases lateral branching and alveolus-like protuberances in the mammary gland. We also show that the mammary phenotypes observed in the E6-AP transgenic and knockout mice are in large part due to the alteration of PR-B protein levels. RNAi-mediated knockdown of E6-AP in T47D breast cancer cells increased PR-B protein levels and stability. In vitro ubiquitination assay using purified E6-AP and PR-B reinforce these conclusions and demonstrate that E6-AP promotes PR-B turnover in an ubiquitin-dependent manner. Furthermore, we also show that E6-AP regulates progesterone-induced Wnt-4 expression by modulating the steady state level of PR-B in both mice and in human breast cancer cells. This novel mechanism appears to regulate normal physiology of the mammary gland and its dysregulation may prove to contribute importantly to mammary cancer development and progression. To test this hypothesis, we examined the E6-AP transgenic mice for tumor formation over a period of 6, 9, 12, 18 and 24 months. Our data shows that, unlike the E6-APWT mice that show normal phenotype, the E6-APC833S mice develop mammary hyperplasia at high penetrance (80%); with a median latency of 18 months. Our findings indicate that the inactivation of the E3-ligase function of E6-AP is sufficient to initiate the process of mammary tumor development. These findings strongly suggest that E6-AP may act as a tumor suppressor by down regulating the ER-alpha, PR-B and thereby their signaling pathways.

Identiferoai:union.ndltd.org:UMIAMI/oai:scholarlyrepository.miami.edu:oa_dissertations-1271
Date09 July 2009
CreatorsRamamoorthy, Sivapriya -.
PublisherScholarly Repository
Source SetsUniversity of Miami
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceOpen Access Dissertations

Page generated in 0.0011 seconds