Dans cette thèse, on étudie deux types d'équations diophantiennes. Une première partie de notre étude porte sur la résolution des équations dites de Ramanujan-Nagell $Cx^2+b^{2m}D=y^n$. Une deuxième partie porte sur les équations dites de Ngell-Ljunggren\\ $\frac{x^p+y^p}{x+y}=p^ez^q$ incluant le cas diagonal $p=q$. Les nouveaux résultats obtenus seront appliqués aux équations de la forme $x^p+y^p=Bz^q$. L'équation de Catalan-Fermat (cas $B=1$) fera l'objet d'un traitement à part.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00429631 |
Date | 03 July 2009 |
Creators | Dupuy, Benjamin |
Publisher | Université Sciences et Technologies - Bordeaux I |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0023 seconds