Return to search

A Study of the Loss Landscape and Metastability in Graph Convolutional Neural Networks / En studie av lösningslandskapet och metastabilitet i grafiska faltningsnätverk

Many novel graph neural network models have reported an impressive performance on benchmark dataset, but the theory behind these networks is still being developed. In this thesis, we study the trajectory of Gradient descent (GD) and Stochastic gradient descent (SGD) in the loss landscape of Graph neural networks by replicating Xing et al. [1] study for feed-forward networks. Furthermore, we empirically examine if the training process could be accelerated by an optimization algorithm inspired from Stochastic gradient Langevin dynamics and what effect the topology of the graph has on the convergence of GD by perturbing its structure. We find that the loss landscape is relatively flat and that SGD does not encounter any significant obstacles during its propagation. The noise-induced gradient appears to aid SGD in finding a stationary point with desirable generalisation capabilities when the learning rate is poorly optimized. Additionally, we observe that the topological structure of the graph plays a part in the convergence of GD but further research is required to understand how. / Många nya grafneurala nätverk har visat imponerande resultat på existerande dataset, dock är teorin bakom dessa nätverk fortfarande under utveckling. I denna uppsats studerar vi banor av gradientmetoden (GD) och den stokastiska gradientmetoden (SGD) i lösningslandskapet till grafiska faltningsnätverk genom att replikera studien av feed-forward nätverk av Xing et al. [1]. Dessutom undersöker vi empiriskt om träningsprocessen kan accelereras genom en optimeringsalgoritm inspirerad av Stokastisk gradient Langevin dynamik, samt om grafens topologi har en inverkan på konvergensen av GD genom att ändra strukturen. Vi ser att lösningslandskapet är relativt plant och att bruset inducerat i gradienten verkar hjälpa SGD att finna stabila stationära punkter med önskvärda generaliseringsegenskaper när inlärningsparametern har blivit olämpligt optimerad. Dessutom observerar vi att den topologiska grafstrukturen påverkar konvergensen av GD, men det behövs mer forskning för att förstå hur.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-273622
Date January 2020
CreatorsLarsson, Sofia
PublisherKTH, Matematisk statistik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-SCI-GRU ; 2020:069

Page generated in 0.0027 seconds