Return to search

Evidence of volatility clustering on the FTSE/JSE top 40 index

Thesis (MBA (Business Management))--Stellenbosch University, 2008. / ENGLISH ABSTRACT: This research report investigated whether evidence of volatility clustering exists on the FTSE/JSE Top 40 Index. The presence of volatility clustering has practical implications relating to market decisions as well as the accurate measurement and reliable forecasting of volatility. This research report was conducted as an in-depth analysis of volatility, measured over five different return interval sizes covering the sample in non-overlapping periods. Each of the return interval sizes' volatility were analysed to reveal the distributional characteristics and if it violated the normality assumption. The volatility was also analysed to identify in which way, if any, subsequent periods are correlated. For each of the interval sizes one-step-ahead volatility forecasting was conducted using Linear Regression, Exponential Smoothing, GARCH(1,1) and EGARCH(1,1) models.
The results were analysed using appropriate criteria to determine which of the
forecasting models were more powerful. The forecasting models range from very simple to very complex, the rationale for this was to determine if more complex models outperform simpler models.
The analysis showed that there was sufficient evidence to conclude that there was volatility clustering on the FTSE/JSE Top 40 Index. It further showed that more complex models such as the GARCH(1,1) and EGARCH(1,1) only marginally outperformed less complex models, and does not offer any real benefit over simpler models such as Linear Regression. This can be ascribed to the mean reversion effect of volatility and gives further insight into the volatility structure over the sample period. / AFRIKAANSE OPSOMMING: Die navorsingsverslag ondersoek die FTSE/JSE Top 40 Indeks om te bepaal of daar genoegsame bewyse is dat volatiliteitsbondeling teenwoordig is. Die teenwoordigheid van volatiliteitsbondeling het praktiese implikasies vir besluite in finansiele markte en akkurate en betroubare volatiliteitsvooruitskattings. Die verslag doen 'n diepgaande ontleding van volatiliteit, gemeet oor vyf verskillende opbrengs interval groottes wat die
die steekproef dek in nie-oorvleuelende periodes. Elk van die opbrengs interval groottes se volatiliteitsverdelings word ontleed om te bepaal of dit verskil van die normaalverdeling. Die volatiliteit van die intervalle word ook ondersoek om te bepaal tot watter mate, indien enige, opeenvolgende waarnemings gekorreleer is. Vir elk van die interval groottes word 'n een-stap-vooruit vooruitskatting gedoen van volatiliteit. Dit word gedoen deur middel van Lineêre Regressie, Eksponensiële Gladstryking, GARCH(1,1) en die EGARCH(1,1) modelle. Die resultate word ontleed deur middel van erkende kriteria om te bepaal watter model die beste vooruitskattings
lewer. Die modelle strek van baie eenvoudig tot baie kompleks, die rasionaal is om te bepaal of meer komplekse modelle beter resultate lewer as eenvoudiger modelle. Die ontleding toon dat daar genoegsame bewyse is om tot die gevolgtrekking te kom dat daar volatiliteitsbondeling is op die FTSE/JSE Top 40 Indeks. Dit toon verder dat meer komplekse vooruitskattingsmodelle soos die GARCH(1,1) en die EGARCH(1,1) slegs marginaal beter presteer het as die eenvoudiger vooruitskattingsmodelle en nie enige werklike voordeel soos Lineêre Regressie bied nie. Dit kan toegeskryf word aan die neiging van volatiliteit am terug te keer tot die gemiddelde,
wat verdere insig lewer oor volatiliteit gedurende die steekproef.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:sun/oai:scholar.sun.ac.za:10019.1/5039
Date12 1900
CreatorsLouw, Jan Paul
ContributorsSmit, E. van der M., Stellenbosch University. Faculty of Economic and Management Sciences. Graduate School of Business.
PublisherStellenbosch : Stellenbosch University
Source SetsSouth African National ETD Portal
Languageen_ZA
Detected LanguageUnknown
TypeThesis
RightsStellenbosch University

Page generated in 0.002 seconds