Durante os últimos anos, tem havido muitas mudanças na maneira como as instituições financeiras avaliam o risco. As regulações têm tido um papel muito importante no desenvolvimento das técnicas de medição do risco. Diante das diversidades de técnicas de estimação e análise de risco utilizadas pelas bolsas de valores e de futuros, nacionais e internacionais, bem como as Clearings de controle de risco, este estudo propôs uma análise comparativo de modelos de volatilidade para o cálculo do Value-at-Risk (VaR) aplicados aos principais índices de ações do mercado financeiro internacional. Utilizouse os modelos de volatilidade condicional da família ARCH levando em consideração a presença de longa dependência em seus retornos (memória longa) e assimetria na volatilidade. Em específico, utilizaram-se os modelos GARCH, EGARCH, APARCH, FIGARCH, FIEGARCH, FIAPARCH e HYGARCH estimados a parir de quatro diferentes distribuições, Normal, t-Student, G.E.D. e t-Student Assimétrica. Analisaramse os índices dos principais mercados de ações do mundo, sendo: Dow Jones, S&P 500, Nasdaq, Ibovespa, FTSE e Nikkei 225. Testou-se também a capacidade preditiva do modelo Riskmetrics desenvolvido pelo J.P. Morgan para o calculo do VaR, comparado com os modelos de volatilidade. Os resultados obtidos sugerem que o pacote desenvolvido pelo J.P.Morgan não se aplica adequadamente à realidade do mercado acionário mundial, como ferramenta de gestão e controle do risco das oscilações dos preços das ações de empresas negociadas nas bolsas de Nova Iorque, Nasdaq, BM&FBOVESPA, bolsa de Londres e bolsa de Tóquio. Os modelos que consideram o efeito de memória longa na volatilidade condicional dos retornos dos índices, em especial o modelo FIAPARCH (1,d,1), foram os que obtiveram melhor ajuste e desempenho preditivo do risco de mercado (Value-at-Risk), conforme valores apresentados pelo teste de razão de falha proposto por Kupiec (1995). / In recent years, there have been many changes in how financial institutions assess risk. The regulations have had a very important role in the development of techniques for measuring risk. Considering the diversity of estimation techniques and risk analysis used by stock exchanges and futures, national and international, as well as clearing houses of risk control, this study proposed a comparative analysis of volatility models for calculating Value-at-Risk (VaR) to the major stock indexes of international finance. It used models of conditional volatility of the ARCH family taking into account the presence of long dependence on their returns (long memory) and asymmetry in volatility. Specifically, it used the models GARCH, EGARCH, APARCH, FIGARCH, FIEGARCH, FIAPARCH and HYGARCH estimated the birth of four different distributions, Normal, t-Student, GED and t-Student Asymmetric. It analyzed the contents of the major stock markets of the world, being: Dow Jones, S & P 500, NASDAQ, Bovespa index, FTSE and Nikkei 225. Was also tested the predictive ability of the RiskMetrics model developed by JP Morgan for the calculation of VaR, compared with the models of volatility. The results suggest that the package developed by JPMorgan does not apply adequately to the reality of global stock market as a tool to manage and control the risk of fluctuations in stock prices of companies traded on the New York Stock Exchange, Nasdaq, BM&FBOVESPA, London Stock Exchange and Tokyo Stock Exchange. Models that consider the effect of long memory in conditional volatility of returns of the indices, especially the model FIAPARCH (1, d, 1), were the ones showing better fit and predictive performance of market risk (Value-at-Risk) , according to figures provided by the ratio test proposed by Kupiec (1995).
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-03052010-173001 |
Date | 16 December 2009 |
Creators | Luiz Eduardo Gaio |
Contributors | Tabajara Pimenta Júnior, Fabiano Guasti Lima, Marcelo Seido Nagano |
Publisher | Universidade de São Paulo, Administração de Organizações, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0019 seconds