En vue de réduire à moyen terme les émissions de gaz à effet de serre d'origine anthropique, le captage-transport-stockage du dioxyde de carbone (CO2) est considéré comme une technologie prometteuse. Plusieurs sites pilotes existent déjà dans le monde. Cependant, avant de développer la technique de façon industrielle, des recherches expérimentales et numériques doivent être menées afin de garantir le succès et la pérennité d'un projet de stockage. Sur un site de stockage, les discontinuités naturelles ainsi que le(s) puits d'injection constituent des chemins préférentiels pour des fuites éventuelles. Ce travail de doctorat s'attache à l'étude des effets de la présence de dioxyde de carbone sur les géomatériaux en présence et, plus particulièrement, sur le ciment du puits d'injection. L'intégrité du puits et donc la garantie de son étanchéité est critique au niveau de la roche de couverture. Après injection et remontée du panache de dioxyde de carbone vers la roche de couverture, le ciment du puits au niveau de la zone triple (puits/réservoir/couverture) est en contact avec un fluide saturé en CO2 dissous. Un tel fluide, au pH acide, est amené à réagir avec les géomatériaux et entraîne diverses réactions de dissolution des minéraux de la matrice cimentaire ainsi que des réactions de précipitation pouvant altérer le matériau. Ce couplage fort existant entre réactions chimiques et comportement poro-mécanique du ciment du puits peut en effet induire un endommagement de la matrice cimentaire, lié aux modifications de la porosité et des caractéristiques de transport, à la dégradation des modules mécaniques, ou encore à la création de surpressions interstitielles localisées. Un modèle constitutif entièrement couplé a été développé pour simuler le comportement chimio-poromécanique du ciment en présence d'un fluide chargé de CO2. Ce modèle a été implémenté dans deux codes numériques, à savoir, un code aux volumes finis d'une part, et un code aux éléments finis, BIL, développé au Laboratoire Navier, d'autre part. La première implémentation se révèle être bien adaptée aux problèmes de transport réactif à front raide, et est utilisée dans ce mémoire pour modéliser une géométrie unidimensionnelle alliant ciment du puits et roche de couverture. La seconde méthode d'implémentation est quant à elle mieux adaptée à la modélisation du comportement poro-mécanique du ciment, mais, comme nous le verrons, nécessite des adaptations numériques a fin d'être convenable pour la modélisation de phénomènes chimiques impliquant des discontinuités. L'endommagement mécanique lié aux phénomènes chimiques est évalué d'une part via une approche micro-mécanique simplifiée, et d'autre part par une théorie de l'endommagement isotrope. En fin, en ce qui concerne la seconde approche, les résultats sont comparés à des tests expérimentaux issus de la littérature scientifique dans le contexte du stockage géologique du CO2 / In order to reduce in medium-term the anthropogenic original greenhouse gas, the processes of capture-transport-storage of carbon dioxide (CO2) is considered as a promising technology. Several pilot sites already exist in the world. However, before developing the technology on an industrial scale, experimental and numerical researches have to be performed in order to ensure the success and the sustainability of a storage project. In a storage site, the natural discontinuities of the rocks and of the injection wells are normally the preferential leak paths of CO2. In this context, the present PhD research focuses particularly on the cement injection wells. The problems of the integrity of the well and thus ensuring its sealing are the critical points of the caprock.After the injection and the ascent of the CO2 plume to the caprock, the cement paste of well at the triple zone (well/ reservoir/caprock) is contacted with a fluid saturated with dissolved CO2. Because of its acidity, such a fluid is reacted with geomaterials and causes diverse reactions of dissolution of the minerals in the cementitious matrix and precipitation reactions that may affect the material. This strong coupling existing between the chemical reactions and poro-mechanical behavior of the cement well can indeed induce damage to the cementitious matrix related to the modifications of the porosity and the transport characteristics, to the degradation of mechanical modulus, or to the development of localized pore pressure.A constitutive model fully coupled has been developed to simulate the chemo-poro-mechanical behaviour of the hard cement paste of the well with the presence of a CO2-rich fluid. This model has been implemented in two numerical codes: on the one hand, a finite volume code, and on the other hand, a finite element code, BIL, developed at the Navier Laboratory. The first implementation was found to be well adapted to the problems of reactive transport with sharp front, and is used in this thesis to modeling an one-dimensional geometry by combining the cement well and the caprock. The second implementation method is best suited to modeling the poro-mechanical behavior of cement, but, as we shall see, requires numerical adaptations in order to be suitable for modeling chemical phenomenon involving discontinuities. The mechanical damage related to chemical phenomena is evaluated firstly via a simplified micro-mechanical approach, and secondly a theory of isotropic damage. Finally, the results are compared to experimental tests from the scientific literature in the context of the CO2 geosequestration
Identifer | oai:union.ndltd.org:theses.fr/2014PEST1050 |
Date | 26 May 2014 |
Creators | Vallin, Valérie |
Contributors | Paris Est, Fen Chong, Teddy, Wong, Henry Kwai-Kwan, Pereira, Jean-Michel |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0026 seconds