This thesis explores how large language models can be used to generate configuration files for Terraform from natural language descriptions. Few-shot and fine-tuning paradigms are evaluated on decoder-only models of varying size, including the state-of-the-art Codex model. The generated configuration files are evaluated with regard to functional correctness on a custom dataset using Terraform, to account for the large space of functionally equivalent configuration files. Results show that the largest model Codex is very capable at generating configuration files given an English description of network infrastructure even without fine-tuning. The result could be a useful tool for engineers who know Terraform fundamentals and have experience with the cloud platforms: AWS, GCP, or Azure. A future study could fine-tune Codex for Terraform using OpenAI's API or create an open source Codex-replication by fine-tuning the GPT-3 replication OPT, which in turn can be \hbox{fine-tuned}. / Denna avhandling undersöker hur stora språkmodeller kan användas till att generera konfigurationsfiler för Terraform med hjälp av språkbeskrivningar. Både few-shot och fine-tuning paradigm utvärderas på decoder-only modeller i olika storlekar, inklusive Codex. För att ta hänsyn till konfigurationsfiler som i utseende ser olika ut men som är funktionellt ekvivalenta utvärderas konfigurationsfilerna utifrån deras funktion. Resultaten visar att Codex, som är den största modellen, har förmågan att generera konfigurationsfiler givet en engelsk beskrivning av nätverksinfrastruktur, trots att Codex inte har undergått fine-tuning. Resultatet kan vara ett användbart verktyg för ingenjörer som har grundläggande kunskap om Terraform och erfarenhet av molnplattformarna: AWS, GCP eller Azure. En framtida studie skulle kunna träna Codex för Terraform med OpenAI:s API eller skapa en Codex-kopia genom att träna GPT-3 kopian OPT som i sin tur kan bli tränad för Terraform.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-317049 |
Date | January 2022 |
Creators | Bonde, Oskar |
Publisher | KTH, Skolan för elektroteknik och datavetenskap (EECS), Stockholm : KTH Royal Institute of Technology |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-EX ; 2022:302 |
Page generated in 0.0022 seconds