Return to search

Characterization of Mre11/Rad50/Xrs2, Sae2, and Exo1 in DNA end resection

Eukaryotic cells repair DNA double-strand breaks (DSBs) through both non-homologous and homologous recombination pathways. The initiation of homologous recombination requires the generation of 3' overhangs, which are essential for the formation of Rad51 protein-DNA filaments that catalyze subsequent steps of strand invasion. Experiments in budding yeast show that resection of the 5' strand at a DSB is delayed in strains lacking any components of the Mre11/Rad50/Xrs2 (MRX) complex¹ . In meiosis, a specific class of hypomorphic mutants of mre11 and rad50 (Rad50S) are completely deficient in 5' resection and leave Spo11 covalently attached to the 5' strands of DNA breaks². Similar to mre11S and rad50S mutants, sae2 deletion strains fail to resect 5' strands at meiotic DSBs and accumulate covalent Spo11 adducts³;⁴. In addition, Sae2 and MRX were also found to function cooperatively to process hairpin-capped DNA ends in vivo in yeast. sae2 and mrx null strains show a severe defect in processing these structures and accumulate hairpin-capped DNA ends⁵;⁶. The Longhese laboratory has also shown that Sae2 deletion strains show a delay in 5' strand resection, similar to rad50S strains⁷. Recently, Bettina Lengsfeld in our laboratory demonstrated that Sae2 itself possesses nuclease activity and that MRX and Sae2 act cooperatively to cleave single-stranded DNA adjacent to DNA hairpin structures⁸. In vitro characterization of Sae2 showed that the central and N-terminal domains are required for MRX-independent nuclease activity and that the C-terminus is required for cooperative activities with MRX. Sae2 also acts independently of MRX as a 5' flap endonuclease on branched structures in vitro. Our studies investigate whether MRX, Sae2, and Exo1 function cooperatively in DNA resection using recombinant, purified proteins in vitro. We developed assays utilizing strand-specific Southern blot analysis to visualize DNA end processing of model DNA substrates using recombinant proteins in vitro. Our results demonstrate that MRX and Sae2 cooperatively resect the 5' end of a DNA duplex together with the Exo1 enzyme, supporting a role for these factors in the early stages of homologous recombination and repair. / text

Identiferoai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/29644
Date28 April 2015
CreatorsNicolette, Matthew Lawrence
Source SetsUniversity of Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatelectronic
RightsCopyright is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works.

Page generated in 0.0015 seconds