• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of the novel endonuclease Sae2 involved in DNA end processing

Shen, Mingjuan 15 January 2013 (has links)
At the very center of sexual reproduction is meiosis. During meiosis, the formation of meiotic Double-Strand-Breaks (DBSs) and their repair by homologous recombination are widely conserved events occurring among most eukaryote species. Meiosis-specific DSB formation requires at least nine proteins (Spo11, Ski8, Rec102, Rec104, Mei4, Mer2, Rec114, Mre11/Rad50/Xrs2) in S. cerevisiae, and the resection of the DSB ends requires additional four proteins (Mre11/Rad50/Xrs2, and Sae2). Spo11 has been identified as the catalytic component of this DSB-initiating complex. However, the roles played by the majority of these proteins are not clear. I have purified the recombinant Spo11/Ski8/Rec102/Rec104 complex, characterized its DNA binding ability as well as its cleavage activity on supercoiled plasmid DNA. Sae2 functions in both meiotic and mitotic repair of DNA double-strand breaks (DSBs) in S. cerevisiae. In vivo experiments have shown that Sae2 collaborates with the Mre11/Rad50/Xrs2 (MRX) complex in DNA end processing. Our laboratory previously showed that recombinant Sae2 exhibits endonuclease activity on single-stranded DNA and single-strand/double-strand DNA junctions using purified proteins in vitro. The MRX complex stimulates Sae2 endonuclease activity on single-stranded DNA close to single-strand/double-strand junctions, through its endonucleolytic activity. However, Sae2 contains no conserved typical nuclease domain, and it only shares very limited homology with its human functional counterpart CtIP. To characterize Sae2 and the active sites responsible for its nuclease activity, I used partial proteolysis and site-directed mutagenesis to analyze the protein. Biochemical assays in vitro show that acidic residues in the central domain play an important role in Sae2 endonuclease activity. Sae2 has also been shown to be phosphorylated by CDK (Cyclin-Dependent Kinase) during the S and G2 phases of the cell cycle, as well as by Tel1/Mec1 upon DNA damage. These modifications are essential for the function of Sae2 in DNA repair, but the function of these modifications are not clear. I have demonstrated that, in the presence of MRX, Sae2 (5D/S267E) mimicking constitutive phosphorylation by CDK and Mec1/Tel1 can assist the 5’ to 3’ exonuclease Exo1 significantly in 5’ end resection by suppressing the inhibitory effect of Ku. These results suggest that Sae2 is a critical switching protein which determines the choice between HR and NHEJ in yeast cells upon DNA damage. / text
2

Characterization of Mre11/Rad50/Xrs2, Sae2, and Exo1 in DNA end resection

Nicolette, Matthew Lawrence 28 April 2015 (has links)
Eukaryotic cells repair DNA double-strand breaks (DSBs) through both non-homologous and homologous recombination pathways. The initiation of homologous recombination requires the generation of 3' overhangs, which are essential for the formation of Rad51 protein-DNA filaments that catalyze subsequent steps of strand invasion. Experiments in budding yeast show that resection of the 5' strand at a DSB is delayed in strains lacking any components of the Mre11/Rad50/Xrs2 (MRX) complex¹ . In meiosis, a specific class of hypomorphic mutants of mre11 and rad50 (Rad50S) are completely deficient in 5' resection and leave Spo11 covalently attached to the 5' strands of DNA breaks². Similar to mre11S and rad50S mutants, sae2 deletion strains fail to resect 5' strands at meiotic DSBs and accumulate covalent Spo11 adducts³;⁴. In addition, Sae2 and MRX were also found to function cooperatively to process hairpin-capped DNA ends in vivo in yeast. sae2 and mrx null strains show a severe defect in processing these structures and accumulate hairpin-capped DNA ends⁵;⁶. The Longhese laboratory has also shown that Sae2 deletion strains show a delay in 5' strand resection, similar to rad50S strains⁷. Recently, Bettina Lengsfeld in our laboratory demonstrated that Sae2 itself possesses nuclease activity and that MRX and Sae2 act cooperatively to cleave single-stranded DNA adjacent to DNA hairpin structures⁸. In vitro characterization of Sae2 showed that the central and N-terminal domains are required for MRX-independent nuclease activity and that the C-terminus is required for cooperative activities with MRX. Sae2 also acts independently of MRX as a 5' flap endonuclease on branched structures in vitro. Our studies investigate whether MRX, Sae2, and Exo1 function cooperatively in DNA resection using recombinant, purified proteins in vitro. We developed assays utilizing strand-specific Southern blot analysis to visualize DNA end processing of model DNA substrates using recombinant proteins in vitro. Our results demonstrate that MRX and Sae2 cooperatively resect the 5' end of a DNA duplex together with the Exo1 enzyme, supporting a role for these factors in the early stages of homologous recombination and repair. / text
3

The Role of Saccharomyces Cerevisiae MRX Complex and Sae2 in Maintenance of Genome Stability

Ghodke, Indrajeet Laxman January 2015 (has links) (PDF)
In eukaryotes, the repair of DSBs is accomplished through two broadly defined processes: Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR). The central step of HR is pairing and exchange of strands between two homologous DNA molecules, which is catalyzed by the conserved Rad51/RecA family of proteins. Prior to this step, an essential step in all HR pathways i.e. 5'→3' resection of broken DNA ends to generate 3' single stranded DNA tails. At the molecular level, initiation of DNA end resection is accomplished through the concerted action of MRX complex (Mre11, Rad50 and Xrs2) and Sae2 protein. To elucidate the molecular basis underlying DSB end resection in S. cerevisiae mre11 nuclease deficient mutants, we have performed a comprehensive analysis of the role of S. cerevisiae Mre11 (henceforth called as ScMre11) in the processing of DSB ends using a variety of DNA substrates. We observed that S. cerevisiae Mre11(ScMre11) exhibits higher binding affinity for single- over double-stranded DNA and intermediates of recombination and repair and catalyzes robust unwinding of substrates possessing a3' single-stranded DNA overhang but not of 5' overhangs or blunt-ended DNA fragments. Furthermore, reconstitution of DSB end resection network in-vitro revealed that Rad50, Xrs2, and Sae2 potentiated the DNA unwinding activity of Mre11. Since the exonuclease activity of Mre11 is of the opposite polarity to that expected for resection of DSBs, unwinding activity of Mre11 in conjunction with Rad50, Xrs2, and Sae2 might provide an alternate mechanism for the generation of ssDNA intermediates for DSB end repair and HR. Additionally, ScMre11 displays strong homotypic as well as heterotypic interaction with Sae2. In summary, our results revealed important insights into the mechanism of DSB end processing and support a model in which Sae2, Rad50, and Xrs2 positively regulate the ScMre11-mediated DNA unwinding activity via their direct interactions or through allosteric effects on the DNA or cofactors. Prompted by the closer association of MRX and Sae2 during DSB end processing, we asked whether Sae2 and its endonuclease activity is required for cellular response to replication stress caused by DNA damage. Toward this end, we examined the sensitivity of S. cerevisiae wild type, sae2Δ and various SAE2 mutant strains defective in phosphorylation and nuclease activity in the presence of different genotoxic agents, which directly or indirectly generate DSBs during replication. We found that S. cerevisiae lacking SAE2 show decreased cell viability, altered cell cycle dynamics after DNA damage, and more specifically, that Sae2 endonuclease activity is essential for these biological functions. To corroborate the genetic evidences for role of SAE2 during replicative stress, we investigated SAE2 functions in-vitro. For this, we purified native Sae2 protein and nuclease dead mutant of Sae2 i.e. sae2G270D. Our studies revealed dimeric forms of both the wild type and mutant forms of Sae2. Furthermore, Sae2 displays higher binding affinity and catalytic activity with branched DNA structures, such as Holliday junction and replication forks. By using nuclease dead Sae2 protein i.e. sae2G270D, we confirmed that the endonuclease activity is not fortuitous and is intrinsic to Sae2 polypeptide. Furthermore, nuclease-defective Mre11 stimulates Sae2endonuclease activity. Mapping of the cleavage sites of Sae2 revealed a distinct preference for cleavage on the 5' end of the Holliday junction, suggesting the importance of Sae2 nuclease during recombination mediated restart of the reversed replication fork. In summary, our data clearly demonstrate a previously uncharacterized role for Sae2 nuclease activity in resection of DSB ends, processing of intermediates of DNA replication/repair and attenuation of DNA replication stress-related defects in S. cerevisiae.
4

A large scale genomic screen reveals mechanisms of yeast postreplication repair in <i>Saccharomyces cerevisiae</i>

Ball, Lindsay Gail 01 April 2011
In Saccharomyces cerevisiae DNA postreplication repair (PRR) functions to bypass replication-blocking lesions to prevent damage-induced cell death. PRR employs two different mechanisms to bypass damaged DNA. While translesion synthesis (TLS) has been well characterized, little is known about the molecular events involved in error-free bypass although it has been assumed that homologous recombination (HR) is required for such a mode of lesion bypass. We undertook a genome-wide, synthetic genetic array (SGA) screen for novel genes involved in PRR and observed evidence of genetic interactions between error-free PRR and HR. We were screening for synthetic lethality which occurs when the combination of two mutations leads to an inviable organism, however, either single mutation allows for cell viability. In addition, we screened for conditionally synthetic lethal interaction which occurs when the combination of two mutations is inviable only in the presence of a DNA-damaging agent. This screen identified and assigned four genes, CSM2, PSY3, SHU1 and SHU2, whose products form a stable Shu complex, to the error-free PRR pathway. Previous studies have indicated that the Shu complex is required for efficient HR and that inactivation of any one of these genes is able to suppress the severe phenotypes of top3 and sgs1. We confirmed and further extended some of the reported observations and demonstrated that error-free PRR mutations are also epistatic to sgs1. Based on the above analyses, we propose a model in which error-free PRR utilizes the Shu complex to recruit HR to facilitate template switching, followed by double-Holliday junction resolution by Sgs1-Top3. Null mutations of HR genes including rad51, 52, 54, 55 and 57 are known to confer characteristic synergistic interactions with TLS mutations. To our surprise, null mutations of genes encoding the Mre11-Rad50-Xrs2 (MRX) complex, which is also required for HR, are epistatic to TLS mutations. The MRX complex confers an endo/exonuclease activity required for the detection and processing of DNA double-strand breaks (DSBs). Our results suggest that the MRX complex functions in both TLS and error-free PRR and that this function requires the nuclease activity of Mre11. This is in sharp contrast to other known HR genes that only function downstream of error-free PRR. Furthermore, we found that inactivation of SGS1 significantly inhibits proliferating cell nuclear antigen (PCNA) monoubiquitination and is epistatic to mutations in TLS, suggesting that Sgs1 also functions at earlier steps in DNA lesion bypass. We also examined the roles of Sae2 and Exo1, two accessory nucleases involved in DSB resection, in PRR. We found that while Sae2 is primarily required for TLS, Exo1 is exclusively involved in error-free PRR. In light of the distinct and overlapping activities of the above nucleases in the resection of DSBs, we propose that the distinct single-strand nuclease activities of MRX, Sae2 and Exo1 dictate the preference between TLS and error-free PRR for lesion bypass. While both PRR pathways are dependent on the ubiquitination of PCNA, error-free PRR utilizes non-canonical Lys63-linked polyubiquitinated PCNA to signal lesion bypass. This mechanism is dependent on the Mms2-Ubc13 complex being in close proximity to PCNA, a process thought to be dependent on Rad5. Rad5 is a member of the SWI/SNF family of ATPases that contains a RING finger motif characteristic of an E3 Ub ligase. Previous in vitro experiments demonstrated the ability of Rad5 to promote replication fork regression, a function dependent on its helicase/ATPase activity. We therefore created site-specific mutants defective in either Rad5 RING finger or helicase/ATPase activity, or both, in order to examine their genetic interactions with known TLS and error-free PRR genes. Our results indicate that both the Rad5 RING finger motif and the helicase/ATPase activity are exclusively involved in error-free PRR. To our surprise, like the Rad5 RING finger, lack of the helicase/ATPase activity also abolishes the Lys63-linked PCNA polyubiquitin chain formation, suggesting that either the Rad5 helicase/ATPase-promoted replication fork regression signals PCNA polyubiquitination or this domain has a yet unidentified activity. In summary, results obtained from this thesis dissertation have revealed novel mechanisms of yeast PRR in S. cerevisiae, a mechanism that appears to be evolutionarily conserved throughout eukaryotes, from yeast to humans.
5

A large scale genomic screen reveals mechanisms of yeast postreplication repair in <i>Saccharomyces cerevisiae</i>

Ball, Lindsay Gail 01 April 2011 (has links)
In Saccharomyces cerevisiae DNA postreplication repair (PRR) functions to bypass replication-blocking lesions to prevent damage-induced cell death. PRR employs two different mechanisms to bypass damaged DNA. While translesion synthesis (TLS) has been well characterized, little is known about the molecular events involved in error-free bypass although it has been assumed that homologous recombination (HR) is required for such a mode of lesion bypass. We undertook a genome-wide, synthetic genetic array (SGA) screen for novel genes involved in PRR and observed evidence of genetic interactions between error-free PRR and HR. We were screening for synthetic lethality which occurs when the combination of two mutations leads to an inviable organism, however, either single mutation allows for cell viability. In addition, we screened for conditionally synthetic lethal interaction which occurs when the combination of two mutations is inviable only in the presence of a DNA-damaging agent. This screen identified and assigned four genes, CSM2, PSY3, SHU1 and SHU2, whose products form a stable Shu complex, to the error-free PRR pathway. Previous studies have indicated that the Shu complex is required for efficient HR and that inactivation of any one of these genes is able to suppress the severe phenotypes of top3 and sgs1. We confirmed and further extended some of the reported observations and demonstrated that error-free PRR mutations are also epistatic to sgs1. Based on the above analyses, we propose a model in which error-free PRR utilizes the Shu complex to recruit HR to facilitate template switching, followed by double-Holliday junction resolution by Sgs1-Top3. Null mutations of HR genes including rad51, 52, 54, 55 and 57 are known to confer characteristic synergistic interactions with TLS mutations. To our surprise, null mutations of genes encoding the Mre11-Rad50-Xrs2 (MRX) complex, which is also required for HR, are epistatic to TLS mutations. The MRX complex confers an endo/exonuclease activity required for the detection and processing of DNA double-strand breaks (DSBs). Our results suggest that the MRX complex functions in both TLS and error-free PRR and that this function requires the nuclease activity of Mre11. This is in sharp contrast to other known HR genes that only function downstream of error-free PRR. Furthermore, we found that inactivation of SGS1 significantly inhibits proliferating cell nuclear antigen (PCNA) monoubiquitination and is epistatic to mutations in TLS, suggesting that Sgs1 also functions at earlier steps in DNA lesion bypass. We also examined the roles of Sae2 and Exo1, two accessory nucleases involved in DSB resection, in PRR. We found that while Sae2 is primarily required for TLS, Exo1 is exclusively involved in error-free PRR. In light of the distinct and overlapping activities of the above nucleases in the resection of DSBs, we propose that the distinct single-strand nuclease activities of MRX, Sae2 and Exo1 dictate the preference between TLS and error-free PRR for lesion bypass. While both PRR pathways are dependent on the ubiquitination of PCNA, error-free PRR utilizes non-canonical Lys63-linked polyubiquitinated PCNA to signal lesion bypass. This mechanism is dependent on the Mms2-Ubc13 complex being in close proximity to PCNA, a process thought to be dependent on Rad5. Rad5 is a member of the SWI/SNF family of ATPases that contains a RING finger motif characteristic of an E3 Ub ligase. Previous in vitro experiments demonstrated the ability of Rad5 to promote replication fork regression, a function dependent on its helicase/ATPase activity. We therefore created site-specific mutants defective in either Rad5 RING finger or helicase/ATPase activity, or both, in order to examine their genetic interactions with known TLS and error-free PRR genes. Our results indicate that both the Rad5 RING finger motif and the helicase/ATPase activity are exclusively involved in error-free PRR. To our surprise, like the Rad5 RING finger, lack of the helicase/ATPase activity also abolishes the Lys63-linked PCNA polyubiquitin chain formation, suggesting that either the Rad5 helicase/ATPase-promoted replication fork regression signals PCNA polyubiquitination or this domain has a yet unidentified activity. In summary, results obtained from this thesis dissertation have revealed novel mechanisms of yeast PRR in S. cerevisiae, a mechanism that appears to be evolutionarily conserved throughout eukaryotes, from yeast to humans.

Page generated in 0.0354 seconds