Return to search

Acute neuromuscular, kinetic, and kinematic responses to accentuated eccentric load resistance exercise

Neurological and morphological adaptations are responsible for the increases in strength that occur following the completion of resistance exercise training interventions. There are a number of benefits that can occur as a result of completing resistance exercise training interventions, these include: (i) reduced risk of developing metabolic health issues; (ii) decreased risk and incidence of falling; (iii) improved cardiovascular health; (iv) elevated mobility; (v) enhanced athletic performance; and (vi) injury prevention. Traditional resistance exercise (constant load resistance exercise (CL)) involves equally loaded eccentric and concentric phases, performed in an alternating manner. However, eccentric muscle actions have unique physiological characteristics, namely greater force production capacity and lower energy requirements, compared to concentric actions. These characteristics have led to the exploration of eccentric-focused resistance exercise for the purposes of injury prevention, rehabilitation, and enhancement of functional capacity. Accentuated eccentric load resistance exercise (AEL) is one form of eccentric-focused resistance exercise. This type of resistance exercise involves a heavier absolute external eccentric phase load than during the subsequent concentric portion of a repetition. Existing training study interventions comparing AEL to CL have demonstrated enhancements in concentric, eccentric, and isometric strength with AEL. However, no differences in strength adaptations have been reported in other AEL vs. CL training studies. Only 7 d intensified AEL training interventions have measured neuromuscular variables, providing evidence that enhanced neuromuscular adaptations may occur when AEL is compared to CL. Therefore, a lack of information is currently available regarding how AEL may differentially affect neuromuscular control when compared to CL. Furthermore, the equivocal findings regarding the efficacy of AEL make it difficult for exercise professionals to decide if they should employ AEL with their athletes or patients and during which training phase this type of resistance exercise could be implemented. Therefore, the aims of this thesis were: (i) to examine differences in acute neuromuscular, kinetic, and kinematic responses between AEL and CL during both lower-body single-joint resistance exercise and multiple-joint free weight resistance exercise; (ii) to assess acute force production and contractile characteristics following AEL and CL conditions; (iii) to investigate the influence of eccentric phase velocity (and time under tension) on acute force production and contractile characteristics following AEL and CL conditions; and (iv) to compare common drive and motor unit firing rate responses after single- and multiple-joint AEL and CL. Before investigating neuromuscular, kinetic, and kinematic responses to AEL it was deemed necessary to evaluate normalisation methods for a multiple-joint free weight resistance exercise that would permit the implementation of AEL. Therefore, the aim of the first study of the thesis was to evaluate voluntary maximal (dynamometer- and isometric squat-based) isometric and submaximal dynamic (60%, 70%, and 80% of three repetition maximum) electromyography (EMG) normalisation methods for the back squat resistance exercise. The absolute reliability (limits of agreement and coefficient of variation), relative reliability (intraclass correlation coefficient), and sensitivity of each method was assessed. Strength-trained males completed four testing sessions on separate days, the final three test days were used to evaluate the different normalisation methods. Overall, dynamic normalisation methods demonstrated better absolute reliability and sensitivity for reporting vastus lateralis and biceps femoris EMG compared to maximal isometric methods. Following the methodological study conducted in Chapter 2, the next study began to address the main aims of the thesis. The purpose of the third chapter of the thesis was to compare acute neuromuscular, kinetic, and kinematic responses between single-joint AEL and CL knee extension efforts that included two different eccentric phase velocities. Ten males who were completing recreational resistance exercise attended four experimental test day sessions where knee extension repetitions (AEL or CL) were performed at two different eccentric phase velocities (2 or 4 s). Elevated vastus lateralis eccentric neuromuscular activation was observed in both AEL conditions (p= 0.004, f= 5.73). No differences between conditions were detected for concentric neuromuscular or concentric kinematic variables during knee extension efforts. Similarly, no differences in after-intervention rate of torque development or contractile charactersitics were observed between conditions. To extend the findings of the third chapter of the thesis and provide mechanistic information regarding how AEL may differentially effect acute neuromuscular variables that have been reported to be undergo chronic adaptations, additional measures that were taken before and after the intervention described in the previous chapter were analysed. Therefore, the purpose of the fourth chapter of the thesis was to compare motor unit firing rate and common drive responses following single-joint AEL and CL knee extension efforts during a submaximal isometric knee extension trapezoid force trace effort. In addition, motor unit firing rate reliability during the before-intervention trapezoid force trace efforts was assessed. No differences in the maximum number of detected motor units were observed between conditions. A condition-time-point interaction effect (p= 0.025, f= 3.65) for firing rate in later-recruited motor units occurred, with a decrease in firing rate observed in after-intervention measures in the AEL condition that was completed with a shorter duration eccentric phase. However, no differences in common drive were detected from before- to after-intervention measures in any of the conditions. The time period toward the end of the plateau phase of before-intervention trapezoid force trace efforts displayed the greatest absolute and relative reliability and was therefore used for motor unit firing rate and common drive analysis. The purpose of the fifth chapter was to compare acute neuromuscular and kinetic responses between multiple-joint AEL and CL back squats. Strength-trained males completed two experimental test day sessions where back squat repetitions (AEL or CL) were performed. Neuromuscular and kinetic responses were measured during each condition. No differences in concentric neuromuscular or concentric kinetic variables during back squat repetitions were detected between conditions. Elevated eccentric phase neuromuscular activation was observed during the AEL compared to the CL condition in two to three of the four sets performed for the following lower-body muscles: (i) vastus lateralis (p< 0.001, f= 15.58); (ii) vastus medialis (p< 0.001, f= 10.77); (iii) biceps femoris (p= 0.003, f= 6.10); and (iv) gluteus maximus (p= 0.001, f= 7.98). There were no clear differences in terms of the neuromuscular activation contributions between muscles within AEL or CL conditions during eccentric or concentric muscle actions. Following the investigation of acute motor unit firing rate and common drive responses to lower limb single-joint AEL and CL in the fourth chapter of the thesis, the question arose as to whether or not similar responses would occur in a more complex model, such as a multiple-joint resistance exercise. Multiple-joint resistance exercise poses different neuromuscular activation, coordination, and stabilisation demands. Therefore, the purpose of the sixth chapter of the thesis was to compare acute motor unit firing rate and common drive responses following multiple-joint lower-body free weight AEL and CL.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:581893
Date January 2013
CreatorsBalshaw, Thomas G.
ContributorsHunter, Angus
PublisherUniversity of Stirling
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/1893/17174

Page generated in 0.0028 seconds