Abstract
During cardiac hypertrophy individual cardiac myocytes increase in size, which is accompanied by augmented protein synthesis and selective induction of a subset of genes. These phenotypic changes of myocytes are a result from altered intracellular signaling mechanisms and molecules. B-type natriuretic peptide (BNP) gene was selected as a target gene for the study of cardiac signaling mechanisms, since it is activated by mechanical, neural and humoral stimuli during myocyte hypertrophy.
To generate hypertrophy of cardiac myocytes, neonatal rat cardiac myocytes were subjected to exogenous hypertrophic agonists such as endothelin-1 (ET-1) or to cyclic mechanical stretch. The role and regulation of transcription factors were studied by utilizing promoter analysis together with site-specific mutations and measurement of DNA binding activity and phosphorylation. GATA-4 mediated signaling was inhibited by blocking DNA binding with decoy oligonucleotides or by decreasing GATA-4 synthesis via adenoviral antisense delivery. ET-1 activated GATA-4 via serine residue phosphorylation, and this effect was mediated via p38 kinase. Similarly, GATA-4 binding activity was increased by ET-1 and mechanical stretch, but it was essential for activation of BNP gene only in the latter stimulation. Importantly, downregulation of GATA-4 protein levels prevented mechanical stretch induced hypertrophy of cardiac myocytes. In contrast, separate mechanism for an ET-1 specific signaling was composed of p38 kinase regulated ETS-like transcription factor-1 (Elk-1). Finally, the effect of mechanical stretch on endogenous endothelin-1 (ET-1) synthesis in cardiac cells was studied. Intrinsic ET-1 synthesis was activated in stretched cardiac myocytes, yet the levels of ET-1 were relatively low.
This work suggests that GATA-4 transcription factor is required for mechanical stretch mediated hypertrophic program, and Elk-1 may act as a downstream effector of ET-1 in cardiac myocytes. Taken together, induction of ET-1 and BNP genes as well as activation of GATA-4 and Elk-1 transcription factors are regulated via a network of mitogen activated protein kinase pathways.
Identifer | oai:union.ndltd.org:oulo.fi/oai:oulu.fi:isbn951-42-7037-1 |
Date | 16 May 2003 |
Creators | Pikkarainen, S. (Sampsa) |
Publisher | University of Oulu |
Source Sets | University of Oulu |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/publishedVersion |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess, © University of Oulu, 2003 |
Relation | info:eu-repo/semantics/altIdentifier/pissn/0355-3221, info:eu-repo/semantics/altIdentifier/eissn/1796-2234 |
Page generated in 0.0022 seconds