Return to search

Structure Determination and Prediction of Zeolites : A Combined Study by Electron Diffraction, Powder X-Ray Diffraction and Database Mining

Zeolites are crystalline microporous aluminosilicates with well-defined cavities or channels of molecular dimensions. They are widely used for applications such as gas adsorption, gas storage, ion exchange and catalysis. The size of the pore opening allows zeolites to be categorized into small, medium, large and extra-large pore zeolites. A typical zeolite is the small pore silicoaluminophosphate SAPO-34, which is an important catalyst in the MTO (methanol-to-olefin) process. The properties of zeolite catalysts are determined mainly by their structures, and it is therefore important to know the structures of these materials in order to understand their properties and explore new applications. Single crystal X-ray diffraction has been the main technique used to determine the structures of unknown crystalline materials such as zeolites. This technique, however, can be used only if crystals larger than several micrometres are available. Powder X-ray diffraction (PXRD) is an alternative technique to determine the structures if only small crystals are available. However, peak overlap, poor crystallinity and the presence of impurities hinder the solution of structures from PXRD data. Electron crystallography can overcome these problems. We have developed a new method, which we have called “rotation electron diffraction” (RED), for the automated collection and processing of three-dimensional electron diffraction data. This thesis describes how the RED method has been applied to determine the structures of several zeolites and zeolite-related materials. These include two interlayer expanded silicates (COE-3 and COE-4), a new layered zeolitic fluoroaluminophosphate (EMM-9), a new borosilicate (EMM-26), and an aluminosilicate (ZSM-25). We have developed a new approach based on strong reflections, and used it to determine the structure of ZSM-25, and to predict the structures of a series of complex zeolites in the RHO family. We propose a new structural principle that describes a series of structurally related zeolites known as “embedded isoreticular zeolite structures”, which have expanding unit cells. The thesis also summarizes several common structural features of zeolites in the Database of Zeolite Structures. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Manuscript. Paper 3: Manuscript.</p>

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:su-127750
Date January 2016
CreatorsGuo, Peng
PublisherStockholms universitet, Institutionen för material- och miljökemi (MMK), Stockholm : Department of Materials and Environmental Chemistry (MMK), Stockholm University
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0067 seconds