Return to search

Caractérisation spectroscopique de la structure et de l'interaction membranaire de la recoverine

La recoverine est impliquée dans la cascade de la phototransduction. C’est une neuroprotéine sensible aux ions calcium. Cette famille de protéines comprend quatorze membres qui ont des caractéristiques structurales communes comme la présence de quatre motifs EF-hand, la liaison du calcium et la N-myristoylation. Le phénomène de calcium-myristoyl switch a été démontré sans ambiguïté uniquement pour la recoverine; il s’agit d’un changement de structure tertiaire qui est modulé par la concentration en calcium. Ainsi, en absence de calcium, la recoverine est dans une conformation cytosolique avec son groupement myristoyle enfoui dans une poche hydrophobe. À concentration élevée en calcium, la recoverine lie deux ions calcium, ce qui résulte en l’extrusion du groupement myristoyle de sa poche hydrophobe et lui permet d’être recrutée à l’interface membranaire. La recoverine est donc une protéine périphérique de la membrane des disques du segment externe des bâtonnets dont la composition lipidique est unique. En effet, cette membrane possède le plus haut contenu en chaînes acyle polyinsaturées parmi tous les lipides du corps humain. De plus, les lipides sont majoritairement zwitterioniques avec la phosphatidylcholine et la phosphatidyléthanolamine. Aussi, il existe un faible pourcentage de lipides chargés négativement, notamment la phosphatidylsérine, qui jouent un rôle dans l’interaction membranaire de la recoverine. L’utilisation de systèmes lipidiques modèles, tels que les vésicules multilamellaires et les bicouches lipidiques orientées mécaniquement, permet de cibler l’influence de chacune des composantes de la membrane. L’objectif général de ce projet de thèse, divisé en quatre objectifs spécifiques, était de déterminer l’influence de la présence du calcium, de la myristoylation de la recoverine et de la composition lipidique sur l’interaction membranaire de la recoverine. Le premier objectif spécifique consistait à déterminer la stabilité structurale de la recoverine myristoylée ou non myristoylée en absence et présence de calcium. La spectroscopie infrarouge a permis de constater que la recoverine est stable structuralement à la température ambiante et corporelle. La présence de calcium audessus d’un certain ratio avec la recoverine assure sa stabilité structurale jusqu’à une température de 65 °C; l’agrégation de la recoverine est observée au-dessus de cette température. La myristoylation de la recoverine augmente sa stabilité thermique. Le deuxième objectif spécifique était de comprendre le rôle des lipides chargés négativement sur l’interaction membranaire de la recoverine. Nous avons ainsi démontré que la recoverine nécessite un minimum de calcium pour conserver sa stabilité thermique en présence de phosphatidylglycérol qui lie aussi le calcium et réduit ainsi la quantité disponible pour la recoverine. La fonte des complexes entre le calcium et le phosphatidylglycérol favorise l’interaction membranaire avec la recoverine en augmentant davantage la température de transition de phase de ces lipides. Le troisième objectif spécifique consistait à caractériser l’effet de la fluidité membranaire sur l’immobilisation de la recoverine en utilisant différentes chaînes acyle de la phosphatidylcholine. La spectroscopie de résonance magnétique nucléaire à l’état solide du deutérium a été employée en utilisant un groupement myristoyle perdeutéré. Nous avons ainsi confirmé le phénomène de calcium-myristoyl switch de la recoverine selon la concentration en calcium. De plus, nous avons aussi montré qu’une fluidité membranaire optimale est nécessaire pour l’immobilisation membranaire du groupement myristoyle. Le quatrième objectif spécifique était d’analyser l’interaction membranaire de la recoverine avec la dioléoylphosphatidylcholine. La spectroscopie infrarouge a montré que la recoverine reste stable thermiquement en présence de ces lipides et ne perturbe pas leur organisation. La recoverine non myristoylée augmente légèrement l’hydratation des lipides qui est corrélée avec une hausse de la diffusion latérale des lipides tel que déterminée par la technique de centerband-only detection of exchange (CODEX) en spectroscopie de résonance magnétique à l’état solide du phosphore-31. La spectroscopie de résonance magnétique du fluor-19 a permis d’observer le calcium-myristoyl switch et l’immobilisation du groupement myristoyle de la recoverine dans la membrane en présence de calcium, ainsi que deux environnements différents pour le groupement myristoyle en absence de calcium. En conclusion, le calcium permet l’interaction membranaire et de conserver la recoverine stable thermiquement. La myristoylation de la recoverine permet son ancrage dans la membrane et augmente l’interaction avec les phosphatidylglycérols. Finalement, une fluidité membranaire optimale est nécessaire à l’ancrage de la recoverine dans la membrane et la charge négative des lipides augmente l’interaction membranaire de la recoverine. / Recoverin is evolved in the phototransduction cascade. It is a neuronal calcium sensor. This protein family of fourteen members shares common structural characteristics such as the presence of four EF-Hand motifs, the binding of calcium and the N-myristoylation. The phenomenon of calcium-myristoyl switch has been demonstrated without ambiguity only for recoverin; it is a change in tertiary structure which is triggered by calcium concentration. So, in the absence of calcium, recoverin is in a cytosolic form with its myristoyl moiety hidden in a hydrophobic pocket. At high calcium concentration, recoverin binds two calcium ions which in turn leads to the extrusion of its myristoyl moiety from the hydrophobic pocket and to its recruitment at the membrane. Recoverin is closely bound to rod outer segment disk membranes which present a unique lipid membrane composition. Indeed, this membrane displays the highest content of polyunsaturated lipid acyl chains in the human body. Moreover, the lipid polar headgroup is in majority zwitterionic with phosphatidylcholine and phosphatidylethanolamine. Also, a small amount of the negatively charged phosphatidylserine is present, which seems to play a role in the membrane interaction of recoverin. Using lipid model systems such as multilamellar vesicles and mechanically oriented lipid bilayers allows to more properly characterize the role of each membrane component. The aim of this thesis project, divided in four specific objectives, was to gain information on recoverin membrane interaction by studying the influence of the presence of calcium, of recoverin myristoylation and of membrane composition. The first specific objective was to determine the structural stability of myristoylated or non myristoylated recoverin in the absence and presence of calcium. Recoverin is structurally stable at ambient and body temperature as shown by infrared spectroscopy. The presence of calcium beyond a specific calcium:recoverin ratio allows protein structural stability up to 65 °C, recoverin aggregation is observed above this temperature. The second specific objective was to understand the role of negatively charged lipids on recoverin membrane interaction. We have demonstrated that recoverin needs a minimal amount of bound calcium to preserve its thermal stability since phosphatidylglycerol binds calcium, which reduces the concentration of calcium available for recoverin. The melting of complexes between calcium and phosphatidylglycerol favors membrane interaction of recoverin by further increasing the lipid phase transition temperature. The third specific objective was to investigate the effect of membrane fluidity on the recoverin immobilization using phosphatidylcholine bearing different lipid acyl chains. Deuterium solid-state nuclear magnetic resonance spectroscopy was used with a perdeuterated myristoyl moiety on recoverin. We have thus confirmed the dependence of the calcium-myristoyl switch phenomenon on calcium concentration. Moreover, we have shown that an optimal membrane fluidity is required for the membrane immobilization of the myristoyl moiety of recoverin. The fourth specific objective was to study the recoverin membrane interaction with dioleoylphosphatidylcholine. Infrared spectroscopy has shown that recoverin does not perturb lipid bilayer organization and remains thermally stable in the presence of these lipids. Non myristoylated recoverin increases slightly lipid hydration that is correlated to an increase in lipid lateral diffusion as seen with centerband-only detection of exchange (CODEX) pulse sequences by phosphorus-31 solid-state nuclear magnetic resonance spectroscopy. 19-Fluorine nuclear magnetic resonance spectroscopy allows the observation of the calcium-myristoyl switch and of recoverin myristoyl moiety membrane immobilization in the presence of calcium as well as two different environments for the recoverin myristoyl moiety in the absence of calcium. In conclusion, calcium allows recoverin membrane interaction and thermal stability of recoverin. Recoverin myristoylation allows its anchorage in the membrane and increases interaction with phosphatidylglycerol. Finally, an optimal membrane fluidity is required for recoverin membrane anchorage and negatively charged lipids increase recoverin membrane interaction.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/29991
Date07 June 2018
CreatorsPotvin-Fournier, Kim
ContributorsSalesse, Christian, Auger, Michèle
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
Typethèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat
Format1 ressource en ligne (xlvii, 222 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0068 seconds