Detecting failures in tricone drill bits is crucial in the mining industry due to their potential consequences, including operational losses, safety hazards, and delays in drilling operations. Timely identification of failures allows for proactive maintenance and necessary measures to ensure smooth drilling processes and minimize associated risks. Accurate failure detection helps mining operations avoid financial losses by preventing unplanned breakdowns, costly repairs, and extended downtime. Moreover, it optimizes operational efficiency by enabling timely maintenance interventions, extending the lifespan of drill bits, and minimizing disruptions. Failure detection also plays a critical role in ensuring the safety of personnel and equipment involved in drilling operations. Traditionally, failure detection in tricone drill bits relies on manual inspection, which can be time-consuming and labor-intensive. Incorporating artificial intelligence-based approaches can significantly enhance efficiency and accuracy. This thesis uses machine learning methods for failure inference in tricone drill bits. A classic Convolutional Neural Network (CNN) classification method was initially explored, but its performance was insufficient due to the small dataset size and imbalanced data. The problem was reformulated as an object detection task to overcome these limitations, and a post-processing operation was incorporated. Data augmentation techniques enhanced the training and evaluation datasets, improving failure detection accuracy. Experimental results highlighted the need for revising the initial CNN classification method, given the limitations of the small and imbalanced dataset. However, You Only Look Once (YOLO) algorithms such as YOLOv5 and YOLOv8 models exhibited improved performance. The post-processing operation further refined the results obtained from the YOLO algorithm, specifically YOLOv5 and YOLOv8 models. While YOLO provides bounding box coordinates and class labels, the post-processing step enhanced drill bit failure detection through various techniques such as confidence thresholding, etc. By effectively leveraging the YOLO-based models and incorporating post-processing, this research advances failure detection in tricone drill bits. These intelligent methods enable more precise and efficient detection, preventing operational losses and optimizing maintenance processes. The findings underscore the potential of machine learning techniques in the mining industry, particularly in mechanical drilling, driving progress and enhancing overall operational efficiency
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-511829 |
Date | January 2023 |
Creators | Akumalla, Gnana Spandana |
Publisher | Uppsala universitet, Institutionen för informationsteknologi |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | IT ; 23083 |
Page generated in 0.0026 seconds