Return to search

Uso da Aplicação Normal de Gauss na poligonização de superfícies implícitas. / Use of the Gauss Normal Application in the polygonization of implicit surfaces.

Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-07-06T13:51:44Z
No. of bitstreams: 1
THICIANY MATSUDO IWANO - DISSERTAÇÃO PPGMAT 2005..pdf: 3751075 bytes, checksum: 2aaae3fdd115cd9f6f4b653f522d94c8 (MD5) / Made available in DSpace on 2018-07-06T13:51:44Z (GMT). No. of bitstreams: 1
THICIANY MATSUDO IWANO - DISSERTAÇÃO PPGMAT 2005..pdf: 3751075 bytes, checksum: 2aaae3fdd115cd9f6f4b653f522d94c8 (MD5)
Previous issue date: 2005-10 / Neste trabalho apresentamos um estudo das principais técnicas de geração de
malhas poligonais, a partir de superfícies descritas matematicamente por funções implícitas,isto é, superfícies definidas pelo conjunto S = f−1(0) = {X ∈ R3 | f(X) = 0}, onde
f : R3 → R e f é, pelo menos, de classe C2. Mostramos um método para obter
as curvaturas gaussiana e média dessas superfícies a partir do vetor ∇f para cada
ponto de S. Abordamos questões como a preservação de características geométricas e
topológicas do objeto gráfico. Dentre os métodos estudados, ressaltamos o algoritmo Marching Triangles, que gera uma malha a partir de um ponto arbitrário p sobre a superfície S e um referencial local, usando a abordagem do avanço de frentes. Em sua implementação, usamos o raio de curvatura, calculado a partir da curvatura normal máxima absoluta da superfície em cada ponto p pertencente a S, para adaptar o comprimento das arestas da malha triangular à geometria local da superfície S / In this work we present a study about the main techniques of surfaces meshes generation, described by implicit functions, that is, surfaces defined by the set S = f−1(0) = {X ∈ R3 | f(X) = 0}, where f : R3 → R and f is, at least, C2. We discuss aspects involving his preservation of graphic object’s geometry and topology. As special method we cite the Marching Triangles that generates a mesh starting from an arbitrary point p on surface S and a local referencial, using advancing fronts approach. In our implementation, we use the radius of curvature, calculated from surface’s absolute maximum normal curvature in each point p in S and the triangular mesh, to adapt the edges length of the mesh to the local geometry.

Identiferoai:union.ndltd.org:IBICT/oai:localhost:riufcg/1117
Date06 July 2018
CreatorsIWANO, Thiciany Matsudo.
ContributorsSILVA, Rosana Marques da., SHIN-TING, Wu, MELO, Vânio Fragoso de.
PublisherUniversidade Federal de Campina Grande, PÓS-GRADUAÇÃO EM MATEMÁTICA, UFCG, Brasil, Centro de Ciências e Tecnologia - CCT
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Biblioteca de Teses e Dissertações da UFCG, instname:Universidade Federal de Campina Grande, instacron:UFCG
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0023 seconds