Return to search

Superficies minimas folheadas por circunferencias / Minimal sufaces foliated by circunferences

Orientador: Valerio Ramos Batista / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-04T03:34:02Z (GMT). No. of bitstreams: 1
Lopes_LauriclecioFigueiredo_M.pdf: 1161319 bytes, checksum: c34f319b4252610a06e72d9b93740a89 (MD5)
Previous issue date: 2005 / Resumo: Entende-se por superfícies mínimas aquelas cuja curvatura média é nula. Têm-se como exemplos clássicos o catenóide, o helicóide e a superfície de Scherk. Historicamente, elas estão relacionadas com minimização de área, porém quando realiza-se uma variação normal incluindo os bordos, a superfície original com curvatura média nula pode representar uma área localmente máxima. Em certos casos de variação com bordo fixo, tem-se realmente a minimização do funcional área. No espaço euclidiano tridimensional, o Teorema da Representação de Weierstrass expressa uma superfície mínima em termos de integrais envolvendo uma função holomorfa e uma meromorfa. A partir desta meromorfa pode-se deduzir a aplicação normal de Gauss. Conceitos como curvatura Gaussiana, curvatura total, superfícies completas e regularidade também são utilizados para deduzir propriedades das superfícies mínimas. Quando estudamos as superfícies mínimas para as quais o bordo consiste de duas circunferências disjuntas, os Teoremas de Enneper e Shiffman, o Princípio de Reflexão de Schwarz e a unicidade do Problema de Bjõrling são ferramentas importantes para a dedução das soluções, a saber, o catenóide e as superfícies de Riemann. Estas apresentam simetrias por reflexão a um plano e invariância por rotação de 180 graus em torno de uma reta. A função "P de Weierstrass" simétrica é de grande utilidade no estudo destas propriedades / Abstract: Minimal surfaces are known to be the ones with mean curvature zero. Classical exampIes are the catenoid, helicoid and the Scherk surface. Historically, they were associated with the property of minimizing area. However, they can even maximize it localIy for cases of normal variation which include the boundary. For fixed boundary, we shalI analyse when they realIy minimize the area functional. In the three-dimensional Euclidean space, the Weierstrass Representation Theorem expresses any minimal surface S by means of integraIs with a holomorphic and a meromorphic functions, usualIy denoted by f and g, respectively. The unitary normal N of S is fulIy determined by g. Concepts like "Gaussian curvature", "total curvature", "com pleteness" and "regularity" are also employed in order to read off some properties of minimal surfaces. Concerning the case for which the boundary of S consists of two disjoint circumferences, Enneper's and Shiffman's Theorems, The Schwarz's Reflection PrincipIe and the B6rling's Problem are fundamental tools to characterize the solutions, namely the catenoid and the Riemann's examples. AlI these are invariant by a reflectional symmetry in a plane, and also by a rotation of 180-degree around a straight line. The symmetric Weierstrass-Pfunction is very useful to deduce these properties / Mestrado / Matematica / Mestre em Matemática

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.unicamp.br:REPOSIP/306661
Date18 February 2005
CreatorsLopes, Lauriclecio Figueiredo
ContributorsUNIVERSIDADE ESTADUAL DE CAMPINAS, Batista, Valério Ramos, 1970-, Ruffino, Paulo Regis Caron, Mercuri, Francesco
Publisher[s.n.], Universidade Estadual de Campinas. Instituto de Matemática, Estatística e Computação Científica, Programa de Pós-Graduação em Matemática
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Format85f. : il., application/pdf
Sourcereponame:Repositório Institucional da Unicamp, instname:Universidade Estadual de Campinas, instacron:UNICAMP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0029 seconds