Le volume des données créées et gérées par les systèmes d’information et leurs utilisateurs augmente régulièrement, conduisant à la problématique croissante de la surinformation. Pour répondre aux défis posés par l’accès à l’information dans de grands volumes de données, les systèmes personnalisés visent à proposer des données et des services plus adaptés à l’utilisateur. Les systèmes de recommandation (SR), apparus au milieu des années 1990, sont un cas particulier de ces systèmes personnalisés. Depuis, les SR ont suscité un intérêt croissant tant dans la communauté académique que du côté des industriels. Par ailleurs, des systèmes contextuels ont été développés dans le but de modéliser, capturer et interpréter l’information relative à l’environnement de l’utilisateur. Systèmes contextuels et SR partagent donc un même but, celui de fournir les données et les services les plus adaptés à la situation de l’utilisateur, généralement dans un environnement dynamique et hétérogène. Les systèmes d’aide à la décision tels que les outils de Business Intelligence (BI) présentent eux aussi des difficultés relatives à leur utilisation, en particulier du fait de la quantité et de la complexité des données accessibles aux utilisateurs. Il est cependant notable que seules quelques rares techniques héritées de systèmes de recommandation ont à ce jour été appliquées dans le domaine des entrepôts de données et des outils d’analyse. Notre travail consiste donc à explorer des synergies pouvant résulter de la combinaison de SR et de systèmes contextuels, à des fins de personnalisation dynamique dans les outils de BI. En réponse à ces challenges, nous développons dans notre travail une plateforme ouverte et modulaire permettant la gestion des situations ou contextes utilisateurs. Cette plateforme repose principalement sur un modèle de situation à base de graphes. Par ailleurs, la dynamique des interactions implique une dépendance inhérente au temps des informations contextuelles. Nous définissons donc deux types de composants actifs, règles d’activation et opérateurs, responsables de la gestion de l’évolution des graphes de connaissances. Les règles sont construites selon le modèle évènement-condition-action (ECA) et sont évaluées en réponse aux divers évènements reçus par la plateforme. L’évaluation d’une règle consiste à valider ses conditions grâce à l’exécution d’un certain nombre de requêtes sur les graphes de données, afin de déclencher l’exécution d’opérateurs appropriés. La plateforme modulaire proposée avec un framework de développement nous a permis de démontrer divers scénarios de personnalisation et de recommandations. Nous présentons en particulier un composant personnalisé d’expansion de requêtes multidimensionnelles. Ce composant exploite d’une part la sémantique des modèles multidimensionnels et d’autre part des statistiques d’usage dérivées de collections de rapports et tableaux de bords existants. Le composant d’expansion de requêtes est utilisé par exemple dans Text-To-Query, un SR suggérant des requêtes et visualisations adaptées, générées dynamiquement afin d’illustrer un document texte (non structuré). T2Q a pour objectif d’aider l’utilisateur à analyser et enrichir les documents sur lesquels il travaille. Enfin, nous décrivons l’intégration de notre plateforme dans un projet de recherche fédérée d’information. La plateforme est en particulier utilisée comme support pour la gestion de la connaissance relative aux utilisateurs. Celle-ci nous permet d’élaborer une stratégie de personnalisation de la recherche via la définition de préférences appliquées aux sources d’information. / The amount of information generated and maintained by information systems and their users leads to the increasingly important concern of information overload. Personalized systems have thus emerged to help provide more relevant information and services to the user. In particular, recommender systems appeared in the mid 1990’s and have since then generated a growing interest in both industry and academia. Besides, context-aware systems have been developed to model, capture and interpret information about the user’s situation, generally in dynamic and heterogeneous environments. Decision support systems like Business Intelligence (BI) platforms also face usability challenges as the amount of information available to knowledge workers grows. Remarkably, we observe that only a small part of personalization and recommendation techniques have been used in the context of data warehouses and analysis tools. Therefore, our work aims at exploring synergies of recommender systems and context-aware systems to develop personalization and recommendation scenarios suited in a BI environment. In response to this, we develop in our work an open and modular situation management platform using a graph-based situation model. Besides, dynamic aspects are crucial to deal with context data which is inherently time-dependent. We thus define two types of active components to enable dynamic maintenance of situation graphs, activation rules and operators. In response to events which can describe users’ interactions, activation rules – defined using the event-condition-action framework – are evaluated thanks to queries on underlying graphs, to eventually trigger appropriate operators. These platform and framework allow us to develop and support various recommendation and personalization scenarios. Importantly, we design a re-usable personalized query expansion component, using semantics of multi-dimensional models and usage statistics from repositories of BI documents like reports or dashboards. This component is an important part of another experimentation we realized, Text-To-Query. This system dynamically generates multi-dimensional queries to illustrate a text and support the knowledge worker in the analysis or enrichment of documents she is manipulating. Besides, we also illustrate the integration and usage of our graph repository and situation management frameworks in an open and extensible federated search project, to provide background knowledge management and personalization.
Identifer | oai:union.ndltd.org:theses.fr/2012ECAP0020 |
Date | 03 April 2012 |
Creators | Thollot, Raphaël |
Contributors | Châtenay-Malabry, Ecole centrale de Paris, Aufaure, Marie-Aude |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0017 seconds