La découverte en 2008 de supraconductivité à relativement haute température (Tc,max = 56K) dans les pnictures de Fer a ravivé les questions fondamentales sur l'origine et la nature de la supraconductivité posés par les supraconducteurs non conventionnels. En particulier, la présence d'une phase antiferromagnétique à proximité de celle supraconductrice dans leur diagramme de phase pose la question du lien entre magnétisme et supraconductivité. Ces supraconducteurs à base de Fe présentent un diagramme de phase générique, mais quelques exceptions remettent en question une description qui se voudrait universelle. Nous avons choisi d'étudier ces cas particuliers grâce à une sonde locale, la résonance magnétique nucléaire (RMN). Nos observations nous ont non seulement permis de comprendre la raison de ces exceptions, mais aussi de s'en servir pour mieux sonder les corrélations magnétiques dans ces matériaux, un ingrédient clé pour la compréhension de la supraconductivité. Premier sujet, la coexistence de supraconductivité et de magnétisme : celle-ci a été observée dans la plupart des supraconducteurs à base de Fer de façon homogène ou inhomogène, mais toujours pour des états magnétiques à faible TN et faibles moments en accord avec des descriptions itinérantes à faibles corrélations. Pourtant un nouveau composé au Sélénium est venu remettre en cause ces conclusions en présentant une apparente coexistence homogène entre une forte supraconductivité macroscopique (Tc ≈ 30K) et un très fort antiferromagnétisme (TN ≈ 600K, moments magnétiques de valeur élevée de 3.3µB). Cette observation suggère donc une description ici plutôt en terme d'isolants de Mott contrairement aux autres supraconducteurs à base de Fer. Nos mesures RMN permettent de montrer en fait l'existence d'une séparation de phase et de statuer sur la stœchiométrie et les propriétés électroniques des différentes phases, pour finalement réconcilier ce composé et les autres familles. Deuxième exception : dans la famille archétype BaFe₂As₂, tous les dopages sur site Fer ou Arsenic ou même l'application de pression mènent à la supraconductivité, sauf dans le cas du dopage au Manganèse ou au Chrome en site Fer, qui ne provoquent pas l'apparition de la supraconductivité. Nos mesures RMN nous ont permis de sonder la nature de la transition magnétique, mais aussi l'état métallique de ces composés substitués. Nous montrons en particulier que le trou supplémentaire du Manganèse substitué à la place du Fer reste en fait localisé sur son site et se manifeste alors par un moment magnétique localisé. Cette étude du dopage par le Manganèse ouvre la voie à l'idée d'utiliser le Manganèse en faible concentration comme source de moments localisés qui polarisent magnétiquement leur environnement. Cette polarisation permet en effet de caractériser la nature même des corrélations de spin. Nous avons donc utilisé la RMN ainsi que la magnétométrie-SQUID pour mesurer cette polarisation dans des composés supraconducteurs pour sonder les corrélations de spins de ces systèmes. Nous concluons que ces corrélations sont plutôt faibles et indépendantes de la température dans les composés dopés en électrons.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00869743 |
Date | 09 July 2013 |
Creators | Texier, Yoan |
Publisher | Université Paris Sud - Paris XI |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0025 seconds