• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude par RMN du magnétisme et de la supraconductivité dans les pnictures de Fer / NMR study of magnetism and superconductivity in iron pnictides

Laplace, Yannis 06 December 2011 (has links)
La découverte récente de supraconductivité à relativement haute température (Tc,max=56K) dans les pnictures de Fer soulève des questions fondamentales sur l’origine et la nature de la supraconductivité : en particulier, la présence d’une phase antiferromagnétique à proximité de celle-ci dans leur diagramme de phase, comme dans d’autres supraconducteurs non conventionnels pose la question du lien entre magnétisme et supraconductivité.Nous nous sommes intéressés à la nature de l’état normal ainsi que des phases antiferromagnétique et supraconductrice d’un point de vue local grâce à la Résonance Magnétique Nucléaire (RMN) dans les pnictures de Fer. Nous avons pour cela étudié des pnictures de Fer de même composé parent BaFe2As2 pour des substitutions Co en site Fer de nature hétérovalente et réalisant un dopage électron ou bien Ru en site Fer de nature isovalente. L’état normal de ces matériaux présente des différences notables avec l’état normal des cuprates supraconducteurs : le désordre introduit par les substitutions au niveau intraplan est faible et on constate l’absence d’une phase de PseudoGap pour la susceptibilité de spin. Les diagrammes de phase sont similaires pour le Co et le Ru mais nos mesures montrent que la nature des phases antiferromagnétique et supraconductrice est en réalité qualitativement différente à l’échelle locale pour les deux types de substitution. Pour la substitution au Co réalisant un dopage électron, les phases électroniques sont homogènes et nous démontrons en particulier qu’à certains dopages, un ordre antiferromagnétique incommensurable coexiste avec la supraconductivité jusqu’à une échelle atomique, suggérant une nature itinérante du magnétisme et un état supraconducteur possédant une symétrie non conventionnelle. Pour la substitution isovalente au Ru, les phases électroniques sont inhomogènes à une échelle étonnamment faible, de l’ordre du nanomètre, mettant en jeu une coexistence entre magnétisme et supraconductivité très distribuée spatialement. Ce travail illustre la possibilité d’engendrer une phase supraconductrice non conventionnelle en déstabilisant une phase antiferromagnétique au moyen de mécanismes agissant soit dans l’espace réciproque (dopage électron), soit dans l’espace réel (substitution isovalente) et donnant lieu par ailleurs à une coexistence de ces phases de nature très différente dans les deux cas. / The recent discovery of superconductivity at a rather high temperature in the iron pnictides (Tc,max=56K) has revived some fundamental questions about the existence and the nature of the superconducting phase : in particular, the existence of an antiferromagnetic phase that is in vicinity of the superconducting phase in their phase diagram, as in other unconventional superconductors, raises questions about the link between magnetism and superconductivity. In this thesis, we studied the normal state as well as the antiferromagnetic and superconducting phases of the iron pnictides on a local scale with Nuclear Magnetic Resonance (NMR). Starting from the same parent compound BaFe2As2, we studied heterovalent Co substitution in Fe site realizing an electron doping and isovalent Ru substitution in Fe site. The normal state is shown to display important qualitative differences with the normal state of cuprates superconductors: disorder induced substitutions in electronically active layers is weak and we show the absence of a PseudoGap phase from spin susceptibility measurements. Whereas the phase diagram is similar for Co and Ru substitutions, we show that the nature of the antiferromagnetic and the superconducting phases is qualitatively different on a local scale in the two cases. For Co substitution leading to electron doping, the electronic phases are homogeneous and we demonstrate in particular the homogeneous coexistence of antiferromagnetism and superconductivity down to an atomic scale for some compositions: this suggests a magnetism of itinerant nature and an unconventional superconducting order parameter for the superconducting phase. For the isovalent Ru substitution, the electronic phases are inhomogeneous at a scale surprisingly low of the order of the nanometer scale, leading to a coexistence that is very distributed spatially. This works shows the possibility to induce an unconventional superconducting phase by the weakening of an antiferromagnetic phase made possible with very different means : either in reciprocal space with electron doping or in real space with isovalent substitution. Moreover, this is shown to lead to different kinds of coexistence between these phases in the two cases.
2

Etude par RMN du magnétisme et de la supraconductivité dans les pnictures de Fer

Laplace, Yannis 06 December 2011 (has links) (PDF)
La découverte récente de supraconductivité à relativement haute température (Tc,max=56K) dans les pnictures de Fer soulève des questions fondamentales sur l'origine et la nature de la supraconductivité : en particulier, la présence d'une phase antiferromagnétique à proximité de celle-ci dans leur diagramme de phase, comme dans d'autres supraconducteurs non conventionnels pose la question du lien entre magnétisme et supraconductivité.Nous nous sommes intéressés à la nature de l'état normal ainsi que des phases antiferromagnétique et supraconductrice d'un point de vue local grâce à la Résonance Magnétique Nucléaire (RMN) dans les pnictures de Fer. Nous avons pour cela étudié des pnictures de Fer de même composé parent BaFe2As2 pour des substitutions Co en site Fer de nature hétérovalente et réalisant un dopage électron ou bien Ru en site Fer de nature isovalente. L'état normal de ces matériaux présente des différences notables avec l'état normal des cuprates supraconducteurs : le désordre introduit par les substitutions au niveau intraplan est faible et on constate l'absence d'une phase de PseudoGap pour la susceptibilité de spin. Les diagrammes de phase sont similaires pour le Co et le Ru mais nos mesures montrent que la nature des phases antiferromagnétique et supraconductrice est en réalité qualitativement différente à l'échelle locale pour les deux types de substitution. Pour la substitution au Co réalisant un dopage électron, les phases électroniques sont homogènes et nous démontrons en particulier qu'à certains dopages, un ordre antiferromagnétique incommensurable coexiste avec la supraconductivité jusqu'à une échelle atomique, suggérant une nature itinérante du magnétisme et un état supraconducteur possédant une symétrie non conventionnelle. Pour la substitution isovalente au Ru, les phases électroniques sont inhomogènes à une échelle étonnamment faible, de l'ordre du nanomètre, mettant en jeu une coexistence entre magnétisme et supraconductivité très distribuée spatialement. Ce travail illustre la possibilité d'engendrer une phase supraconductrice non conventionnelle en déstabilisant une phase antiferromagnétique au moyen de mécanismes agissant soit dans l'espace réciproque (dopage électron), soit dans l'espace réel (substitution isovalente) et donnant lieu par ailleurs à une coexistence de ces phases de nature très différente dans les deux cas.
3

Magnétisme et supraconductivité dans les pnictures de fer étudiés par diffusion Raman

Chauviere, Ludivine 27 October 2011 (has links) (PDF)
La récente découverte de supraconductivité dans les pnictures de fer ouvre un nouveau champ d'investigation du mécanisme d'appariement des électrons donnant lieu à des hautes températures critiques. Dans ces systèmes, le magnétisme et la supraconductivité sont des phases en compétition, où le dopage x déstabilise l'ordre magnétique au profit de l'ordre supraconducteur. Un régime de coexistence entre ces deux ordres est présent pour une certaine gamme de dopage dans le composé Ba(Fe1-xCox)2As2, que nous avons étudié par diffusion inélastique de la lumière. Nous nous sommes intéressés à l'interaction entre les degrés de liberté structuraux, magnétiques et électroniques. L'étude des excitations vibrationnelles du cristal montre le fort couplage spin-phonon, à travers le dédoublement d'un mode de phonon dans les plans fer-arsenic amplifié par l'anisotropie planaire des degrés de spin, et le fort couplage électron-phonon, via l'asymétrie significative du mode de phonon de l'arsenic. L'évolution du continuum des excitations électroniques à travers la transition magnétique et supraconductrice traduit, d'une part, l'ouverture du gap d'onde de densité de spin, et d'autre part, que le gap supraconducteur est de symétrie s-anisotrope. Après avoir identifié séparément l'impact de chacune des transitions magnétique et supraconductrice sur nos spectres, nous nous sommes intéressés au régime de coexistence entre les deux ordres. Nos résultats illustrent une compétition pour les mêmes états électroniques au niveau de Fermi entre ces deux ordres, qui s'établissent sur différentes zones de la surface de Fermi.
4

Diagramme de phase et corrélations électroniques dans les supraconducteurs à base de Fer : une étude par RMN

Texier, Yoan 09 July 2013 (has links) (PDF)
La découverte en 2008 de supraconductivité à relativement haute température (Tc,max = 56K) dans les pnictures de Fer a ravivé les questions fondamentales sur l'origine et la nature de la supraconductivité posés par les supraconducteurs non conventionnels. En particulier, la présence d'une phase antiferromagnétique à proximité de celle supraconductrice dans leur diagramme de phase pose la question du lien entre magnétisme et supraconductivité. Ces supraconducteurs à base de Fe présentent un diagramme de phase générique, mais quelques exceptions remettent en question une description qui se voudrait universelle. Nous avons choisi d'étudier ces cas particuliers grâce à une sonde locale, la résonance magnétique nucléaire (RMN). Nos observations nous ont non seulement permis de comprendre la raison de ces exceptions, mais aussi de s'en servir pour mieux sonder les corrélations magnétiques dans ces matériaux, un ingrédient clé pour la compréhension de la supraconductivité. Premier sujet, la coexistence de supraconductivité et de magnétisme : celle-ci a été observée dans la plupart des supraconducteurs à base de Fer de façon homogène ou inhomogène, mais toujours pour des états magnétiques à faible TN et faibles moments en accord avec des descriptions itinérantes à faibles corrélations. Pourtant un nouveau composé au Sélénium est venu remettre en cause ces conclusions en présentant une apparente coexistence homogène entre une forte supraconductivité macroscopique (Tc ≈ 30K) et un très fort antiferromagnétisme (TN ≈ 600K, moments magnétiques de valeur élevée de 3.3µB). Cette observation suggère donc une description ici plutôt en terme d'isolants de Mott contrairement aux autres supraconducteurs à base de Fer. Nos mesures RMN permettent de montrer en fait l'existence d'une séparation de phase et de statuer sur la stœchiométrie et les propriétés électroniques des différentes phases, pour finalement réconcilier ce composé et les autres familles. Deuxième exception : dans la famille archétype BaFe₂As₂, tous les dopages sur site Fer ou Arsenic ou même l'application de pression mènent à la supraconductivité, sauf dans le cas du dopage au Manganèse ou au Chrome en site Fer, qui ne provoquent pas l'apparition de la supraconductivité. Nos mesures RMN nous ont permis de sonder la nature de la transition magnétique, mais aussi l'état métallique de ces composés substitués. Nous montrons en particulier que le trou supplémentaire du Manganèse substitué à la place du Fer reste en fait localisé sur son site et se manifeste alors par un moment magnétique localisé. Cette étude du dopage par le Manganèse ouvre la voie à l'idée d'utiliser le Manganèse en faible concentration comme source de moments localisés qui polarisent magnétiquement leur environnement. Cette polarisation permet en effet de caractériser la nature même des corrélations de spin. Nous avons donc utilisé la RMN ainsi que la magnétométrie-SQUID pour mesurer cette polarisation dans des composés supraconducteurs pour sonder les corrélations de spins de ces systèmes. Nous concluons que ces corrélations sont plutôt faibles et indépendantes de la température dans les composés dopés en électrons.
5

Diagramme de phase et corrélations électroniques dans les supraconducteurs à base de Fer : une étude par RMN / NMR study of phase diagram and electronic correlations in Iron based superconductors

Texier, Yoan 09 July 2013 (has links)
La découverte en 2008 de supraconductivité à relativement haute température (Tc,max = 56K) dans les pnictures de Fer a ravivé les questions fondamentales sur l’origine et la nature de la supraconductivité posés par les supraconducteurs non conventionnels. En particulier, la présence d’une phase antiferromagnétique à proximité de celle supraconductrice dans leur diagramme de phase pose la question du lien entre magnétisme et supraconductivité. Ces supraconducteurs à base de Fe présentent un diagramme de phase générique, mais quelques exceptions remettent en question une description qui se voudrait universelle. Nous avons choisi d’étudier ces cas particuliers grâce à une sonde locale, la résonance magnétique nucléaire (RMN). Nos observations nous ont non seulement permis de comprendre la raison de ces exceptions, mais aussi de s’en servir pour mieux sonder les corrélations magnétiques dans ces matériaux, un ingrédient clé pour la compréhension de la supraconductivité. Premier sujet, la coexistence de supraconductivité et de magnétisme : celle-ci a été observée dans la plupart des supraconducteurs à base de Fer de façon homogène ou inhomogène, mais toujours pour des états magnétiques à faible TN et faibles moments en accord avec des descriptions itinérantes à faibles corrélations. Pourtant un nouveau composé au Sélénium est venu remettre en cause ces conclusions en présentant une apparente coexistence homogène entre une forte supraconductivité macroscopique (Tc ≈ 30K) et un très fort antiferromagnétisme (TN ≈ 600K, moments magnétiques de valeur élevée de 3.3µB). Cette observation suggère donc une description ici plutôt en terme d’isolants de Mott contrairement aux autres supraconducteurs à base de Fer. Nos mesures RMN permettent de montrer en fait l’existence d’une séparation de phase et de statuer sur la stœchiométrie et les propriétés électroniques des différentes phases, pour finalement réconcilier ce composé et les autres familles. Deuxième exception : dans la famille archétype BaFe₂As₂, tous les dopages sur site Fer ou Arsenic ou même l’application de pression mènent à la supraconductivité, sauf dans le cas du dopage au Manganèse ou au Chrome en site Fer, qui ne provoquent pas l’apparition de la supraconductivité. Nos mesures RMN nous ont permis de sonder la nature de la transition magnétique, mais aussi l’état métallique de ces composés substitués. Nous montrons en particulier que le trou supplémentaire du Manganèse substitué à la place du Fer reste en fait localisé sur son site et se manifeste alors par un moment magnétique localisé. Cette étude du dopage par le Manganèse ouvre la voie à l’idée d’utiliser le Manganèse en faible concentration comme source de moments localisés qui polarisent magnétiquement leur environnement. Cette polarisation permet en effet de caractériser la nature même des corrélations de spin. Nous avons donc utilisé la RMN ainsi que la magnétométrie-SQUID pour mesurer cette polarisation dans des composés supraconducteurs pour sonder les corrélations de spins de ces systèmes. Nous concluons que ces corrélations sont plutôt faibles et indépendantes de la température dans les composés dopés en électrons. / The discovery in 2008 of superconductivity at a rather high temperature in the iron pnictides (Tc,max = 56K) has revived the fundamental questions about the existence and the nature of the superconducting phase raised by the unconventional superconductors. In particular, the existence of an antiferromagnetic phase that is in vicinity of the superconducting phase in the phase diagram raises questions about the link between magnetism and superconductivity. These Iron based superconductors have a generic phase diagram, but some exceptions are questioning a description that would be universal. We chose to study these cases through a local probe, nuclear magnetic resonance (NMR). Our observations have not only allowed us to understand the reasons for these exceptions, but also be used to better probe the magnetic correlations in these materials, a key ingredient for the understanding of superconductivity. First subject, the coexistence of superconductivity and magnetism: it was observed in most superconductors based on iron homogeneously or inhomogeneously, but always for magnetic states at low TN and low magnetic moments in accordance with nesting descriptions with low correlations. Yet a new compound Selenium came to question these conclusions with an apparent homogeneous coexistence between a strong macroscopic superconductivity (Tc ≈ 30K) and a very strong antiferromagnetism (TN ≈ 600K, magnetic moments of high value of 3.3μB). This observation suggests a description rather in terms of Mott insulators, unlike other iron-based superconductors. Our NMR measurements show the existence of an effective phase separation and determine the stoichiometry and the electronic properties of the different phases, eventually reconciling this compound and other families. Second exception : in the archetype family BaFe₂As₂, all iron or arsenic on-site doping or even application of pressure leads to superconductivity, except in the case of Chrome or Manganese doping in Iron site, which does not cause the onset of superconductivity. Our NMR measurements have allowed us to probe the nature of the magnetic transition, but also the metallic state of the substituted compounds. We show in particular that the extra hole Manganese substituted in place of the iron is actually located on its atom and then manifested by a localized magnetic moment. This study of Manganese doping opens up the idea of using Manganese in low concentrations as a source of localized moments which magnetically polarize their environment. This polarization makes it possible to characterize the nature of the spin correlations. We used NMR and SQUID magnetometry, to measure the polarization in superconducting compounds to probe the spin correlations of these systems. We conclude that these correlations are rather low and independent of temperature in electrons doped compounds.

Page generated in 0.0973 seconds