Return to search

Multiphoton Excited Spectroscopy with Plasmonic and Composite Nanostructures

Ziel dieser Arbeit ist es, das Verständnis der durch plasmonische und Komposit-Nanomaterialien verursachten Verstärkung der Hyper-Raman Streuung zu vertiefen. Diese Nanostrukturen werden in oberflächenverstärkten Hyper-Raman-Streuung (surface enhanced hyper Raman scattering, SEHRS) Experimenten, die durch den nichtlinearen parametrischen Prozess der Frequenzverdopplung (SHG) und der oberflächenverstärkten Raman-Streuung (SERS) ergänzt werden, zur umfassenden Untersuchung organischer Moleküle und Materialien angewendet. Die SEHRS-Verstärkung von Goldnanopartikeln unterschiedlicher Form und Größe sowie von Metallfilmen bestehend aus periodisch angeordneten Hohlräumen (Nanovoids) wurde in Experimenten mit dem Farbstoff Kristallviolett bei einer Anregungswellenlänge von 1064 nm und durch numerische Simulationen untersucht. Die Ergebnisse zeigen, dass Aggregate von großen kugelförmigen Goldnanopartikeln und Nanostäbchen in Lösung eine sehr hohe elektromagnetische SEHRS-Verstärkung bewirken. Darüber hinaus können die Homogenität des Signals, die Reproduzierbarkeit in Bezug auf die Herstellung und die Substratstabilität im Vergleich zu früheren Ansätzen durch Verwendung von Nanovoids signifikant verbessert werden. Die Weiterentwicklung von Nanostrukturen für die multimodale Mehrphotonen-Spektroskopie ist hier anhand der Synthese und der optischen Charakterisierung von plasmonischen Bariumtitanat-Nanokompositen demonstriert. Eine systematische Studie der Wechselwirkung von Aminosäuren und aromatischen Thiolen mit Gold- und Silbernanopartikeln wurde mit SEHRS bei einer Anregungswellenlänge von 1064 nm und mit SERS bei Anregungswellenlängen im sichtbaren Spektralbereich durchgeführt. Zusammenfassend wurde in dieser Arbeit gezeigt, dass ein tieferes Verständnis und ein rationales Design verbesserter plasmonischer Nanostrukturen ermöglichen, SEHRS mit anderen Mehrphotonen-angeregten Effekten zu kombinieren und diese in der analytischen Chemie und Biophysik einzusetzen. / The aim of this work is to extend the understanding of the enhancement in surface enhanced hyper Raman scattering (SEHRS) generated by plasmonic and composite nanomaterials, and to apply these nanostructures in SEHRS experiments complemented by the non-linear parametric process of second harmonic generation (SHG) and by surface enhanced Raman scattering (SERS), for the comprehensive probing of organic molecules and materials. The enhancement from gold nanoparticles with different sizes and shapes as well as from metal films comprised of periodically arranged voids was investigated in SEHRS experiments at 1064 nm excitation using the crystal violet dye and by numerical simulations. The results indicate that aggregates of large spherical gold nanoparticles and nanorods in solution provide very strong electromagnetic enhancement of HRS. Moreover, the homogeneity of the signal, reproducibility in terms of fabrication, and substrate stability can be significantly improved compared to previous approaches by using nanovoid arrays. Further developments of enhancing nanostructures towards multimodal multiphoton spectroscopic applications are demonstrated here by the synthesis and optical characterization of plasmonic-barium titanate nanocomposites. A systematic study on the interaction of amino acids and aromatic thiols with gold and silver nanoparticles was conducted with 1064 nm-excited SEHRS and SERS excited in the visible spectral range. In conclusion, this work underlines that a better understanding and a rational design of improved plasmonic nanostructures allow to combine SEHRS and other multiphoton excited effects, and to use them in analytical chemistry and biophysics.

Identiferoai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/22024
Date11 March 2020
CreatorsMadzharova, Fani
ContributorsKneipp, Janina, Hildebrandt, Peter, Schuhmann, Wolfgang
PublisherHumboldt-Universität zu Berlin
Source SetsHumboldt University of Berlin
LanguageEnglish
Detected LanguageGerman
TypedoctoralThesis, doc-type:doctoralThesis
Formatapplication/pdf
Rightshttp://rightsstatements.org/vocab/InC/1.0/
Relationhttps://doi.org/10.1039/C7CS00137A, https://doi.org/10.1021/acs.jpcc.7b10091, https://doi.org/10.1002/adom.201900650, https://doi.org/10.1002/adfm.201904289, https://doi.org/10.1021/acs.jpcc.6b10905, https://doi.org/10.1021/acs.jpcc.0c00294

Page generated in 0.1605 seconds