Return to search

Development of a Novel Relative Localization Sensor

By enabling coordinated task execution and movement, robotic swarms can achieve efficient exploration or disaster site management. When utilizing Ultra-wideband (UWB) radio technology for ranging, the proposed relative localization sensor can be made lightweight and relatively indifferent to the ambient environment. Infrastructure dependency is eliminated by making the whole sensor fit on a swarm agent, while allowing for a certain amount of positional error. In this thesis, a novel algorithm is implemented in to constrained hardware and compared to a more traditional trilateration approach. Both algorithms utilize Particle Swarm Optimization (PSO) to be more robust towards noise and achieves similar accuracy, but the proposed algorithm can run up to ten times faster. The antenna array which forms the localization sensor weighs only 56g, and achieves around 0.5m RMSE with a 10Hz update rate. Experiments show that the accuracy can be further improved if the rotational bias observed in the UWB devices are compensated for.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:ltu-65515
Date January 2017
CreatorsKohlbacher, Anton
PublisherLuleƄ tekniska universitet, Rymdteknik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0018 seconds