Biomass fast pyrolysis liquid (bio-oil) is a cellulose based alternative fuel with the potential to displace fossil fuels in stationary heat and power applications. To better understand the combustion behavior and emissions of bio-oil, a 10 kW spray burner was designed and constructed. The effect of swirl, atomization quality, ignition source (pilot) energy, air/fuel preheat and equivalence ratio on the stability and emissions of bio-oil spray flames was investigated. A blend of 80% pyrolysis liquid and 20% ethanol by volume was used during the tests and the results were compared to burner operation with diesel. It is important to have good atomization, thorough mixing and high swirl in order to stabilize ignition, promote the burnout of bio-oil and decrease CO, hydrocarbon and particulate matter emissions. The total amount of primary air and atomizing air that can be used to improve turbulence, mixing, droplet burnout and overall combustion quality is limited by the distillable fraction and narrow lean blow-out limit associated with pyrolysis liquid. Air and fuel preheat are important for reducing hydrocarbon and CO emissions, although subsequent fuel boiling should be avoided in order to maintain flame stability. The NOx produced in bio-oil flames is dominated by the conversion of fuel bound nitrogen. The particulate matter collected during bio-oil combustion is composed of both carbonaceous cenosphere residues and ash. Under good burning conditions, the majority consists of ash. Pilot flame energy and air/fuel preheat have a weak effect on the total particulate matter in the exhaust. Generally, these results suggest that available burner parameters can be adjusted in order to achieve low hydrocarbon, CO and carbonaceous particulate matter emissions when using pyrolysis liquid. Total particulates can be further mitigated by reducing the inherent ash content in bio-oil. Comparative burner tests with diesel reveal much lower emissions for this fuel at most of the operating points considered. This is due to the fully distillable nature, better atomization and improved spray ignition characteristics associated with diesel. Because of its superior volatility, diesel can also operate over a much wider range of primary air and atomizing air flow rates compared to bio-oil.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OTU.1807/31959 |
Date | 11 January 2012 |
Creators | Tzanetakis, Tommy |
Contributors | Thomson, Murray J. |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | en_ca |
Detected Language | English |
Type | Thesis |
Page generated in 0.0019 seconds