Dans une première partie, nous développerons la théorie de l'homogénéisation symplectique ainsi que ses applications à la théorie de Mather et à la rigidité symplectique. Les invariants spectraux lagrangiens seront l'outil de base de ce travail. Dans une seconde partie, nous rappelerons les toutes nouvelles applications de la théorie des faisceaux aux problèmes de non déplaçabilité. Nous formulerons ce que nous pensons être l'équivalent de l'homologie de Floer dans ce cas là et les invariants spectraux. Puis, à l'aide de ces outils nous prouverons la non-déplaçabilité de sous-variétés lagrangiennes non exactes du cotangent. Ensuite, nous parlerons des applications à la topologie symplectique $C^0$ et à l'optimisation non lisse.
Identifer | oai:union.ndltd.org:CCSD/oai:pastel.archives-ouvertes.fr:pastel-00780016 |
Date | 22 October 2012 |
Creators | Vichery, Nicolas |
Publisher | Ecole Polytechnique X |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0021 seconds