Return to search

Propriétés symplectiques et hamiltoniennes des orbites coadjointes holomorphes

L'objet de cette thèse est l'étude de la structure symplectique des orbites coadjointes holomorphes, et de leurs projections. Une orbite coadjointe holomorphe O est une orbite coadjointe elliptique d'un groupe de Lie réel semi-simple, connexe, non compact et à centre fini, provenant d'un espace symétrique hermitien G/K, telle que O puisse être naturellement munie d'une structure kählérienne G-invariante. Ces orbites sont une généralisation de l'espace symétrique hermitien G/K. Dans cette thèse, nous prouvons que le symplectomorphisme de McDuff se généralise aux orbites coadjointes holomorphes, décrivant la structure symplectique de l'orbite O par le produit direct d'une orbite coadjointe compacte et d'un espace vectoriel symplectique. Ce symplectomorphisme est ensuite utilisé pour déterminer les équations de la projection de l'orbite O relative au sous-groupe compact maximal K de G, en faisant intervenir des résultats récents de Ressayre en Théorie Géométrique des Invariants.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00552150
Date10 December 2010
CreatorsDeltour, Guillaume
PublisherUniversité Montpellier II - Sciences et Techniques du Languedoc
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.002 seconds