L'objet de cette thèse est l'étude de la structure symplectique des orbites coadjointes holomorphes, et de leurs projections. Une orbite coadjointe holomorphe O est une orbite coadjointe elliptique d'un groupe de Lie réel semi-simple, connexe, non compact et à centre fini, provenant d'un espace symétrique hermitien G/K, telle que O puisse être naturellement munie d'une structure kählérienne G-invariante. Ces orbites sont une généralisation de l'espace symétrique hermitien G/K. Dans cette thèse, nous prouvons que le symplectomorphisme de McDuff se généralise aux orbites coadjointes holomorphes, décrivant la structure symplectique de l'orbite O par le produit direct d'une orbite coadjointe compacte et d'un espace vectoriel symplectique. Ce symplectomorphisme est ensuite utilisé pour déterminer les équations de la projection de l'orbite O relative au sous-groupe compact maximal K de G, en faisant intervenir des résultats récents de Ressayre en Théorie Géométrique des Invariants.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00552150 |
Date | 10 December 2010 |
Creators | Deltour, Guillaume |
Publisher | Université Montpellier II - Sciences et Techniques du Languedoc |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.002 seconds