Return to search

Comparison of control strategies for Peltonturbines in Wave Energy Converters / Jämförelse av styrstrategier för Peltonturbiner i vågenergiomvandlare

Wave energy is a promising renewable resource with a higher energy density than both wind and solar. Waves can travel thousands of kilometers with minimal energy loss, making them more reliable than the previously mentioned alternatives. A device that utilizes wave energy to generate electricity is calleda Wave Energy Converter. The converter studied in this thesis is a non-resonant point absorber, a floating device that absorbs energy through its displacement in the water. An incident wave approaching the converter combined with a latching strategy transforms the wave into a water jet, which emerges as a pulse wave and varies from zero to maximum velocity. The kinetic energy of the water jet gets converted to electricity through a Pelton turbine and a permanent magnet synchronous motor that acts as a generator. The thesis investigates three generator velocity control strategies and two deadtime strategies and aims to answer which strategy yields the best efficiency for the selected wave fields. The strategies strive to maximize the efficiency of the Pelton turbine while minimizing the frictional and electrical losses. The first velocity control approach relies on historical data and computes the average based on the previous wavefield. The second approach maintains a predetermined turbine velocity based on the average jet velocity of each incident wave. Lastly, the third strategy continuously adapts the speed during each jet pulse to maximize the Pelton turbine efficiency. The dead-time strategies refer to the approaches employed between waves. The first approach maintainsa constant generator velocity, reducing the necessary acceleration to match the next incident wave. The second approach freewheels the generator, allowing it to decelerate due to friction losses. During the deceleration, the generator draws no current, but as the next wave arrives it must instead accelerate. Consequently, drawing more current but during a shorter period. The results reveal that there is no significant difference between the two deadtime strategies, but there is a significant difference between the velocity control strategies. Furthermore, the results illustrate the effectiveness of the local averaging method and the adaptive control method, which result in the highest system efficiency. / Vågenergi är en lovande energiresurs som har högre energidensitet än både vind- och solkraft. Vågor kan färdas tusentals kilometer med minimal energiförlust,vilket gör dem mer tillförlitliga än de tidigare nämnda alternativen. En anordning som kan nyttja vågors energi för att generera elektricitet kallas för vågenergiomvandlare. Omvandlaren som studerats i detta arbete är en icke-resonant punktabsorbent,vilket är en flytande anordning som absorberar energi genom dess förflyttning i vattnet. När en kommande våg närmar sig omvandlaren transformeras vågen till en vattenstråle, som framträder som en pulsvåg och varierar mellan noll och maxhastighet, via en styrstrategi vid namn ”latching”. Den kinetiska energin från vattenstrålen omvandlas till elektrisk energi via en Peltonturbin och en synkronmotor som agerar som generator. Det här arbetet undersöker tre hastighetsstyrstrategier samt två mellantidsstrategier för generatorn, och ämnar besvara vilken som är den mest effektiva strategin för en uppsättning vågor. Målet med dessa strategier är att maximera effektiviteten hos Peltonturbinen medan friktions- samt elektriska förluster minimeras. Den första hastighetsstyrstrategin håller en konstant hastighetbaserad på ett medelvärde från ett tidigare vågfält. Den andra strategin hålleren konstant hastighet, vilken anpassas till varje inkommande våg. Den tredje strategin anpassar hastigheten kontinuerligt under pulsvågen för att maximera turbineffektiviteten. Med mellantidsstrategierna menas de styrstrategier som nyttjas mellan vattenpulserna. I den första mellantidsstrategin körs generatorn som motor och håller konstant hastighet, vilket minskar de nödvändiga accelerationerna för att möta kommande vågs referenshastighet. Den andra strategin låter generatorn frihjula, vilket gör att hastigheten faller på grund av friktionsförluster. Under hastighetsminskningen drar generatorn ingen ström, men den måste då istället accelerera när kommande våg anländer. Detta innebär att generatorn kommer att dra mer ström, men under en kortare period. Resultaten avslöjade att det inte var någon signifikant skillnad mellan de två mellantidsstrategierna och att det var en signifikant skillnad mellan hastighetsstyrstrategierna. Resultatet visade att de två metoderna med variabel hastighet gav högre systemeffektivitet än metoden med konstant hastighet.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-302124
Date January 2021
CreatorsHAMILTON, PHILIP, SJÖGREN, ANDREAS
PublisherKTH, Skolan för industriell teknik och management (ITM)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-ITM-EX ; 2021:465

Page generated in 0.0019 seconds