La production de tournesol inclue des interactions complexes entre le génotype et l'environnement tout au long du cycle de la culture. La profondeur de l'enracinement du tournesol est fortement liée au sol, à sa structure et à la disponibilité en eau. La compaction du sol représente un enjeu important dans le contexte actuel de la durabilité des systèmes agricoles, et se caractérise par une diminution de la disponibilité hydrique du sol, une augmentation de la densité apparente et la résistance du sol à la pénétration. L’altération de l'exploration du système racinaire et de ses conséquences sur la croissance du système aérien sous contraintes mécaniques du sol a été explorée pour de nombreuses cultures (maïs Zea mays, Blé Triticum durum, ou de soja Glycine max). Peut d’études ont été réalisée sur le tournesol (Helianthus annuus L.). Parmi ces études seules quelqu’une incluent des cinétiques de croissance, encore moins incluent la qualité de la production. Le but de ce travail est d'étudier i) les modifications du système racinaire causée par la compaction du sol, ii) l'altération du système aérien causé par la modification du système racinaire, et iii) les interactions entre les systèmes. Une synthèse réalisée à partir la littérature et du schéma conceptuel du modèle STICS a permis d’établir un schéma conceptuel théorique retraçant le mécanisme des actions de la compaction du sol sur la plante de tournesol. A partir de ce schéma, deux expérimentations au champ et une expérience en conditions contrôlées ont été construites. En présence de compaction du sol, une diminution de la disponibilité hydrique, une augmentation de la densité apparente et la résistance du sol à la pénétration ont été observées conformément à la littérature. Le stress causé par la contrainte mécanique du sol a induit une réduction de la croissance et de l'exploration du système racinaire. Ceci a engendré une diminution de la surface foliaire, de la biomasse aérienne, et de la hauteur des plantes. Les pertes d'efficacité de l'utilisation des ressources et de rendement ont été observées par des indicateurs indirects. Les analyses de sensibilité de STICS ont été effectuées sur les paramètres d'intérêts, confirmant le seuil à partir duquel la compaction du sol conduit à des effets négatifs sur la plante de tournesol. Des propositions ont été faites pour adapter le modèle à la croissance du système racinaire de tournesol, i) en établissant une liaison directe entre les appareils aérien et souterrain, et ii) en réajustant l'indice de stress provoqué par les variations de densité apparente / The sunflower production takes place throughout complex interactions between the genotype, the crop management and the environment. Sunflower rooting depth is strongly related with soil structural behavior and gravimetric water availability. Soil compaction represents an important issue in the actual context of agricultural system durability, and is characterized by a decrease of soil available water, an increase of bulk density and soil resistance to the penetration. Variation of root system exploration and their consequences on above ground growth and development under soil mechanical constraints have been explored for many crops (Maize Zea mays, Wheat Triticum durum, or Soybean Glycine max), but only few researches have been carried out on sunflower (Helianthus annuus L.). Among them only few includes kinetic aspects and less quality of production. The aim of this work is to study i) the root system modifications caused by soil compaction, ii) the above ground system alteration caused by root system modification, and iii) the interactions between the systems. An analysis carried out from literature and the model STICS conceptual framework lead to the construction of a conceptual framework explaining the mechanism of soil compaction actions on sunflower plant. From this knowledge, two field experiments and a controlled experiment were built. In presence of soil compaction a decrease of soil water availability and an increase of bulk density and soil resistance to penetration were observed as reported in literature. The stress caused by soil mechanical constraint induced a reduction of root system growth and exploration. This induced a decrease of leaf area, shoot biomass, and plant height. The use efficiency of resource and yield lost were observed by indirect indicators. Sensitivity analyses of STICS were done on parameter of interest, confirming the threshold above which soil compaction lead to negative impact on sunflower. Proposition were made to adapt the model to sunflower root system growth, by implementing a direct link between shoot and root growth, and by readjusting the bulk density stress index
Identifer | oai:union.ndltd.org:theses.fr/2012INPT0017 |
Date | 09 May 2012 |
Creators | Mirleau-Thebaud, Virginie |
Contributors | Toulouse, INPT, Daydé, Jean, Scheiner, Javier David |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0029 seconds