Return to search

Sur la contrôlabilité et son coût pour quelques équations aux dérivées partielles

Dans cette thèse, on s'intéresse à la contrôlabilité et son coût pour un certain nombre d'équations aux dérivées partielles linéaires ou non linéaires issues de la physique. La première partie de la thèse concerne la contrôlabilité à zéro de l'équation de Navier-Stokes tridimensionnelle avec conditions au bord de Dirichlet et contrôle interne distribué sur un sous-ouvert de domaine de définition n'agissant que sur une seule des trois équations. La preuve repose sur la méthode du retour ainsi que sur une méthode originale de résolution algébrique de systèmes différentiels inspirée de travaux de Gromov. La deuxième partie de la thèse concerne le coût du contrôle en temps petit ou en viscosité évanescente d'équations linéaires unidimensionnelles. Dans un premier temps, on montre que l'on peut, dans certains cas, faire un lien entre ces deux problèmes. Notamment il est possible d'obtenir des résultats de contrôlabilité uniforme de l'équation de transport-diffusion unidimensionnelle à coefficients constants contrôlée sur le bord gauche à l'aide de résultats déjà connus sur le contrôle de l'équation de la chaleur. Dans un second temps, on s'intéresse au coût du contrôle frontière en temps petit d'un certain nombre d'équations pour lesquelles l'opérateur spatial associé est autoadjoint ou anti-autoadjoint à résolvante compacte et ayant des valeurs propres se comportant de manière polynomiale, en utilisant la méthode des moments. On en déduit des résultats pour des équations de type Korteweg-de-Vries linéarisées, diffusion fractionnaire et Schrödinger fractionnaire.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00918763
Date11 December 2013
CreatorsLissy, Pierre
PublisherUniversité Pierre et Marie Curie - Paris VI
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0022 seconds