Spelling suggestions: "subject:"méthode duu retour"" "subject:"méthode dud retour""
1 |
Contrôlabilité d'équations issues de la mécanique des fluidesChapouly, Marianne 23 June 2009 (has links) (PDF)
Dans cette thèse on étudie la contrôlabilité globale de quelques équations non linéaires issues de la mécanique des fluides, précisément des équations de type Burgers, une équation de Korteweg-de Vries, et un système de Navier-Stokes 2-D. La stratégie employée consiste, d'une part, à appliquer la méthode du retour de J.-M. Coron, et d'autre part, à jouer sur la non linéarité de l'équation considérée. <br />De cette manière, on montre dans la première partie la contrôlabilité globale exacte pour tout temps d'équations de type Burgers non visqueuses puis on utilise ensuite ce résultat pour obtenir un résultat de contrôlabilité globale approchée pour l'équation de Burgers visqueuse. Cette propriété, combinée avec un résultat de contrôlabilité locale, entraîne ainsi la contrôlabilité globale aux trajectoires de l'équation de Burgers visqueuse, pour tout temps. <br />Dans la deuxième partie, on procède d'une manière similaire pour obtenir la contrôlabilité globale exacte d'une équation de Korteweg-de Vries non linéaire, pour tout temps. <br />Enfin, dans la dernière partie on s'intéresse à un système de Navier-Stokes 2-D avec conditions aux bords de type Navier. On obtient, en utilisant cette fois des résultats sur l'équation d'Euler des fluides incompressibles, la contrôlabilité globale à zéro, pour tout temps.
|
2 |
Contrôlabilité d'une équation de Korteweg-de Vries et d'un système d'équations paraboliques couplées. Stabilisation en temps fini par des feedbacks instationnaires / Null controllability of a Korteweg-de Vries equation and of a coupled parabolic equations system. Stabilisation in finite time by means of non-stationary feedbackGuilleron, Jean-Philippe 14 November 2016 (has links)
Ce doctorat porte sur trois domaines de la théorie du contrôle : le contrôle par le bord d'une équation de Korteweg-de Vries, le contrôle de trois équations de la chaleur couplées par des termes cubiques et la stabilisation en temps fini de trois systèmes classiques de dimension finie. Pour l'équation de Korteweg-de Vries, on démontre d'abord une inégalité de Carleman en utilisant un poids exponentiel bien choisi, puis on en déduit la contrôlabilité à 0 de l'équation. Pour le système de trois équations de la chaleur couplées par des termes cubiques, on montre la contrôlabilité à 0 globale alors que le linéarisé autour de 0 n'est pas contrôlable. On applique la méthode du retour pour obtenir la contrôlabilité locale : on construit des trajectoires du système de contrôle allant de 0 à 0 et ayant un linéarisé contrôlable. Puis un changement d'échelle permet d'obtenir un résultat global. Enfin, concernant les trois systèmes de dimension finie, il s'agit de systèmes contrôlables mais à linéarisés non contrôlables et qui ne sont pas stabilisables à l'aide de feedbacks stationnaires (continus). On construit des feedbacks explicites dépendant du temps conduisant à une stabilisation en temps fini. Pour cela on s'occupe de différentes parties du systèmes pendant différents intervalles de temps. / This doctoral thesis focuses on three fields of Control Theory: the control on the edge of the Korteweg-de Vries equation, the control of three heat equations coupled by cubic terms, and the stabilisation in finite time of three classic systems of finite dimension. For the KdV equation, we first demonstrate a Carleman inequality using a well-chosen exponential weight, then we deduce the controllability at zero of the equation. For the system of three heat equations coupled by cubic terms, we show the global controllability at zero even though the linearized system around zero is not controllable. We apply the return method to obtain local controllability: we build control system trajectories going from zero to zero and whose linearised systems are controllable. Then a scale change allows us to obtain a global result. Finally, concerning the three systems of finite dimension, these systems are controllable systems but the linearised systems are not controllable and are not stabilised with means of continuous stationary feedback. We construct an explicit time-dependent feedback leading to a stabilisation in finite time. For this we deal with different parts of systems during different intervals of time.
|
3 |
Contribution à l'étude mathématique des plasmas fortement magnétisésHan-Kwan, Daniel 08 July 2011 (has links) (PDF)
Cette thèse est consacrée à l'étude mathématique de certains aspects de l'équation de Vlasov-Poisson, qui constitue un modèle cinétique classique en physique des plasmas. Dans un premier temps, nous nous intéressons à la justification rigoureuse d'approximations de l'équation de Vlasov-Poisson avec un champ magnétique extérieur intense, qui sont couramment utilisées, notamment lors des simulations numériques. Le but est de décrire certains régimes d'intérêt par des modèles asymptotiques, obtenus en faisant tendre un petit paramètre vers 0 (modélisant la physique du problème considéré) dans les équations originelles. Nous étudions pour commencer la limite quasineutre, c'est-à-dire la limite quand la longueur de Debye tend vers 0, pour l'équation de Vlasov-Poisson avec des électrons suivant une loi de Maxwell-Boltzmann. Dans la limite des plasmas froids, à l'aide de la méthode de l'entropie relative et de techniques de filtrage, nous montrons la convergence vers des équations hydrodynamiques compressibles telles que l'équation d'Euler isotherme. Nous nous intéressons ensuite à l'approximation "rayon de Larmor fini" en trois dimensions, qui permet de décrire le comportement turbulent d'un plasma soumis à un champ magnétique intense. Pour cette étude, qui peut en fait être interprétée comme une limite quasineutre anisotrope, nous montrons des résultats très différents selon la dynamique décrite. En effet, dans le cas de la dynamique avec des électrons sans masse, nous exhibons un effet stabilisant qui permet d'obtenir le même résultat que pour le système bidimensionnel, alors que pour la dynamique avec des ions lourds, nous mettons en évidence les conséquences d'instabilités de type multi-fluides. Dans un second temps, nous nous consacrons à l'étude mathématique du confinement d'un plasma de tokamak. Nous commençons par proposer un modèle hydrodynamique simplifié à deux températures et étudions la stabilité au sens de Lyapunov de deux états stationnaires permettant de modéliser l'équilibre du plasma. Nos résultats sont conformes à l'heuristique physique et mettent de surcroit en évidence qu'un fort gradient de température favorise la stabilité : cela pourrait fournir une explication aux modes de haut confinement (H-modes) dans les tokamaks. Pour finir, nous attaquons ce problème du point de vue de la théorie du contrôle et prouvons des résultats pour l'équation de Vlasov-Poisson en présence de champs extérieurs (typiquement un champ magnétique).
|
4 |
Sur la contrôlabilité et son coût pour quelques équations aux dérivées partiellesLissy, Pierre 11 December 2013 (has links) (PDF)
Dans cette thèse, on s'intéresse à la contrôlabilité et son coût pour un certain nombre d'équations aux dérivées partielles linéaires ou non linéaires issues de la physique. La première partie de la thèse concerne la contrôlabilité à zéro de l'équation de Navier-Stokes tridimensionnelle avec conditions au bord de Dirichlet et contrôle interne distribué sur un sous-ouvert de domaine de définition n'agissant que sur une seule des trois équations. La preuve repose sur la méthode du retour ainsi que sur une méthode originale de résolution algébrique de systèmes différentiels inspirée de travaux de Gromov. La deuxième partie de la thèse concerne le coût du contrôle en temps petit ou en viscosité évanescente d'équations linéaires unidimensionnelles. Dans un premier temps, on montre que l'on peut, dans certains cas, faire un lien entre ces deux problèmes. Notamment il est possible d'obtenir des résultats de contrôlabilité uniforme de l'équation de transport-diffusion unidimensionnelle à coefficients constants contrôlée sur le bord gauche à l'aide de résultats déjà connus sur le contrôle de l'équation de la chaleur. Dans un second temps, on s'intéresse au coût du contrôle frontière en temps petit d'un certain nombre d'équations pour lesquelles l'opérateur spatial associé est autoadjoint ou anti-autoadjoint à résolvante compacte et ayant des valeurs propres se comportant de manière polynomiale, en utilisant la méthode des moments. On en déduit des résultats pour des équations de type Korteweg-de-Vries linéarisées, diffusion fractionnaire et Schrödinger fractionnaire.
|
Page generated in 0.0501 seconds