<p>The emission legislations and the new On Board Diagnostics (OBD) legislations are becoming more strict and making the demands on control and fault detection higher. One way to</p><p>control and diagnose the engine is to use a control/diagnose strategy based on physical models and therefore better models are necessary. Also, to be competitive and meet the markets demand of higher power, longer durability and better fuel economy, the models needs to be improved continuously. In this thesis a mean value model of the intake system that predicts the charge air temperature has been developed. Three models of different complexity for the intercooler heat-exchanger have been investigated and validated with various results. The suggested intercooler heat-exchanger model is implemented in the mean value model of the intake system and the whole model is validated on three different data sets. The model predicts the intake manifold temperature with a maximum absolute error of 10.12 K.</p>
Identifer | oai:union.ndltd.org:UPSALLA/oai:DiVA.org:liu-61 |
Date | January 2005 |
Creators | Holmgren, Anders |
Publisher | Linköping University, Department of Electrical Engineering, Institutionen för systemteknik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, text |
Page generated in 0.0022 seconds