Le contrôle de la longueur des télomères est une étape critique régissant le potentiel
réplicatif des cellules eucaryotes. A cause du problème de fin de réplication, les
chromosomes raccourcissent à chaque cycle de division. Ce raccourcissement se produit
dans des séquences particulières appelées télomères. La longueur des télomères est en
relation directe avec les capacités prolifératives des cellules et est responsable de la limite
de division de Hayflick. Cependant, dans certains types cellulaires et dans plus de 90% des
cancers, la longueur des télomères va être maintenue par une enzyme spécialisée appelée
télomérase. Encore aujourd’hui, comprendre la biogénèse de la télomérase et savoir
comment elle est régulée reste un élément clé dans la lutte contre le cancer. Depuis la
découverte de cette enzyme en 1985, de nombreux facteurs impliqués dans sa maturation
ont été identifiés. Cependant, comment ces facteurs sont intégrés dans le temps et dans
l’espace, afin de produire une forme active de la télomérase, est une question restée sans
réponse. Dans ce projet, nous avons utilisé la levure Saccharomyces cerevisiæ comme
modèle d’étude des voies de biogénèse et de trafic intracellulaire de l’ARN de la
télomérase, en condition endogène.
La première étape de mon travail fut d’identifier les facteurs requis pour
l’assemblage et la localisation de la télomérase aux télomères en utilisant des techniques
d’Hybridation In Situ en Fluorescence (FISH). Nous avons pu montrer que la composante
ARN de la télomérase fait la navette entre le noyau et le cytoplasme, en condition
endogène, dans les cellules sauvages. Nos travaux suggèrent que ce trafic sert de contrôle
qualité puisqu’un défaut d’assemblage de la télomérase conduit à son accumulation
cytoplasmique et prévient donc sa localisation aux télomères. De plus, nous avons identifié
les voies d’import/export nucléaire de cet ARN.
Dans une deuxième approche, nous avons réussi à développer une méthode de
détection des particules télomérasiques in vivo en utilisant le système MS2-GFP. Notre
iv
étude montre que contrairement à ce qui a été précédemment décrit, la télomérase n’est pas
associée de façon stable aux télomères au cours du cycle cellulaire. En fin de phase S, au
moment de la réplication des télomères, la télomérase se regroupe en 1 à 3 foci dont
certains colocalisent avec les foci télomériques, suggérant que nous visualisons la
télomérase active aux télomères in vivo. La délétion des gènes impliqués dans l’activation
et le recrutement de la télomérase aux télomères entraine une forte baisse dans
l’accumulation des foci d’ARN au sein de la population cellulaire. Nos résultats montrent
donc pour la première fois la localisation endogène de l’ARN TLC1 in situ et in vivo et
propose une vue intégrée de la biogenèse et du recrutement de la télomérase aux télomères. / Telomere length control is a critical step that governs the replicative potential of
eukaryotic cells. Due to the end replication problem, chromosomes shorten at each round of
division. This attrition occurs in specialized sequences at the extremity of chromosomes
called telomeres. Telomere size is in direct relationship with proliferative potential and
responsible for Hayflick’s division limit. However, in different cell type and in cancers, an
end-specialized enzyme called telomerase maintains telomere length. Reactivation of
telomerase in somatic cells triggers a pre-tumoral phenotype and more than 90% of cancers
highly express this enzyme. Still today, understanding how telomerase is synthesized and
reactivated can be a key step for the understanding of cancer arising and progression. Since
the discovery of this enzyme in 1985, several factors involved in the regulation of this
enzyme have been discovered. However, the spatio-temporal regulation of telomerase
biogenesis and regulation has not been determined. We used the yeast S.cerevisiæ to study
the biogenesis and recruitment of telomerase to telomeres.
The first step in my work was to determine the factors required for the biogenesis
and recruitment of telomerase to telomeres using fluorescence in situ hybridization. We
have shown that the telomerase RNA component shuttles between the nucleus and the
cytoplasm in wild type endogenous conditions. We have shown that this intracellular
trafficking is used as a quality control mechanism that prevents the nuclear localization of
miss assembled telomerase complexes. Moreover, we have identified the import/export
pathways of the telomerase RNA.
In a second step, we developed an in vivo localization system to follow the
telomerase RNA dynamics. We used the MS2-GFP system to track this RNA in vivo. Our
study shows that, contrary to what was previously described, telomerase is not stably
associated to telomeres during the cell cycle but freely diffuses in the nucleus of G1 cells.
In late S phase, at the moment of telomere replication, telomerase clusters in 1 to 3 big foci
vi
that colocalizes with telomeres clusters in vivo, suggesting the visualization of active
telomerase particles replicating telomeres. Disruption of gene coding for telomerase
activators triggers a great reduction of telomerase RNA clusters in a cell population.
Altogether, our results shows for the first time the localization of the endogenous form of
the telomerase RNA and propose an integrated view of telomerase biogenesis and
recruitment to telomeres.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMU.1866/4357 |
Date | 02 1900 |
Creators | Gallardo, Franck |
Contributors | Chartrand, Pascal |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | French |
Detected Language | French |
Type | Thèse ou Mémoire numérique / Electronic Thesis or Dissertation |
Page generated in 0.0029 seconds