Return to search

3D High Resolution T1 Mapping of Human Brain

In this study, three different MR pulse sequences, IR-FSE, MP2RAGE, and firstly proposed MP3RAGE, were applied to obtain high-resolution 3D T1 mapping of whole brain at 1.5 Tesla. Among these three sequences, MP2RAGE uses fast gradient echo as readout module. Signals of two different inversion times are acquired at once and can be used to calculate T1 relaxation time according to Bloch equation. However, the magnetization was also influenced by the excitation efficiency of inversion adiabatic pulse, which was usually estimated by numerical simulation and taken as a constant over the field of view in the literature. However, this might not be true in practice. Therefore, a newly modified pulse sequence, MP3RAGE, was proposed to acquire data of three distinct inversion times without increasing scanning time. As a result, the spatial distribution of T1 and inversion efficiency can be assessed by solving nonlinear least square problem. In addition, the IR-FSE sequence with six inversion times was also applied in every experiment to provide T1 value for reference. Results showed that the T1 estimation obtained by MP2RAGE is close to, but slightly lower than that by IR-FSE, which is in agreement with those reported in literatures. In addition, the 3D high-resolution maps of T1 and efficiency were successfully estimated with the use of MP3RAGE. Spatial smoothing on inversion efficiency helps reducing the sensitivity to noise in the nonlinear approach, leading to T1 values closer to those by IR-FSE.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0906112-110542
Date06 September 2012
CreatorsChen, Po-tsun
ContributorsMing-Ting Wu, Tzu-Chao Chuang, Hsiao-Wen Chung, Wen-Chau Wu, Teng-Yi Huang
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0906112-110542
Rightsunrestricted, Copyright information available at source archive

Page generated in 0.0017 seconds