• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 1
  • Tagged with
  • 10
  • 10
  • 6
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

3D High Resolution T1 Mapping of Human Brain

Chen, Po-tsun 06 September 2012 (has links)
In this study, three different MR pulse sequences, IR-FSE, MP2RAGE, and firstly proposed MP3RAGE, were applied to obtain high-resolution 3D T1 mapping of whole brain at 1.5 Tesla. Among these three sequences, MP2RAGE uses fast gradient echo as readout module. Signals of two different inversion times are acquired at once and can be used to calculate T1 relaxation time according to Bloch equation. However, the magnetization was also influenced by the excitation efficiency of inversion adiabatic pulse, which was usually estimated by numerical simulation and taken as a constant over the field of view in the literature. However, this might not be true in practice. Therefore, a newly modified pulse sequence, MP3RAGE, was proposed to acquire data of three distinct inversion times without increasing scanning time. As a result, the spatial distribution of T1 and inversion efficiency can be assessed by solving nonlinear least square problem. In addition, the IR-FSE sequence with six inversion times was also applied in every experiment to provide T1 value for reference. Results showed that the T1 estimation obtained by MP2RAGE is close to, but slightly lower than that by IR-FSE, which is in agreement with those reported in literatures. In addition, the 3D high-resolution maps of T1 and efficiency were successfully estimated with the use of MP3RAGE. Spatial smoothing on inversion efficiency helps reducing the sensitivity to noise in the nonlinear approach, leading to T1 values closer to those by IR-FSE.
2

Die Bedeutung von Nativem T1-Mapping in der Diagnostik der kardialen Amyloidose bei Patienten mit linksventrikulärer Hypertrophie

Voßhage, Nicola Hilde 06 March 2024 (has links)
No description available.
3

Real-time MRI and Model-based Reconstruction Techniques for Parameter Mapping of Spin-lattice Relaxation

Wang, Xiaoqing 18 October 2016 (has links)
No description available.
4

A Time-efficient Method for Accurate T1 Mapping of The Human Brain

Chang, Yung-Yeh 22 November 2011 (has links)
The signal resulting from the IR-FSE sequence has been thoroughly analyzed in order to improve the accuracy of quantitative T1 mapping of the human brain. Several optimized post-processing algorithms have been studied and compared in terms of their T1 mapping accuracy. The modified multipoint two-parameter fitting method was found to produce less underestimation compared to the traditional multipoint three-parameter fitting method, and therefore, to result in a smaller T1 estimation error. Two correction methods were proposed to reduce the underestimation problem which is commonly seen in IR-FSE sequences used for measuring T1, especially when a large turbo factor is used. The intra-scan linear regression method corrects the systematic error effectively but the RMSE may still increase due to the increase of uncertainty in sequences with large turbo factors. The weighted fitting model corrects not only the systematic error but also the random error and therefore the aggregate RMSE for T1 mapping can be effectively reduced. A new fitting model that uses only three different TI measurements for T1 estimation was proposed. The performance for the three-point fitting method is as good as that of the multipoint fitting method with correction in the phantom simulation. In addition, a new ordering scheme that implements the three-point fitting method is proposed; it is theoretically able to reduce the total scan time by 1/3 compared to the TESO-IRFSE sequence. The performance of the three-point fitting method on the real human brain is also evaluated, and the T1 mapping results are consistent to with the conventional IR-FSE sequence. More samples of true anatomy are needed to thoroughly evaluate the performance of the proposed techniques when applied to T1 mapping of the human brain.
5

MR-tomographische Gewebscharakterisierung der Phänomene des akuten Myokardinfarkts mittels parametrischem Mapping

Hermeling, Thomas Johannes 12 November 2024 (has links)
Hintergrund Das parametrische Mapping bietet durch die Erhebung absoluter Relaxationszeiten, welche die Gewebseigenschaften jedes Pixels widerspiegeln, das Potential, die nichtinvasive Gewebsdifferenzierung nach einem akuten Myokardinfarkt gegenüber dem heute als Goldstandard anzusehenden Late Gadolinium Enhancement (LGE) und der T2-gewichteten Short tau inversion recovery (T2-STIR) Sequenz weiter zu verbessern. Es galt das diagnostische Potential des parametrischen Mappings zur Differenzierung von Ödem, Nekrose, mikrovaskulärer Obstruktion (MVO), intramyokardialer Hämorrhagie (MH) und Remote Myokard unter Beweis zu stellen, Referenzwerte zu generieren und Schwellenwerte zur Differenzierung von pathologisch verändertem und gesundem Myokard abzuleiten. Die prognostische Relevanz der bestimmten Messwerte sollte durch Korrelation mit prognoserelevanten Faktoren ermittelt werden. Methoden In dieser retrospektiven Studie wurden 88 Patienten nach erlittenem ST Hebungsinfarkt (STEMI) oder Nicht-ST-Hebungsinfarkt (NSTEMI) untersucht, bei denen nach perkutaner koronarer Intervention eine Kardio-MRT (1,5 Tesla) durchgeführt wurde. Beim T1-Mapping kam eine modifizierte Look-Locker Inversion Recovery Sequenz nativ (T1 nativ), 1-2 min (EG-T1) und 15-18min (LG-T1) nach Gabe von 0,15mmol/kgKG Gadobutrol Kontrastmittel (KM) zum Einsatz. Beim T2-Mapping wurde eine Multi-Echo-Spin-Echo Sequenz und beim T2*-Mapping eine Gradient-Multiecho T2*-Sequenz verwendet. Das Extrazellularvolumen (EZV) leitete sich aus T1 nativ und LG-T1 ab. T2-STIR und LGE dienten als Referenzverfahren für Ödem und Nekrose. Die linksventrikuläre Pumpfunktion (LVEF) wurde mittels einer Steady-State Free Precession Sequenz bestimmt. Eine Voruntersuchung an N=14 Patienten, bei der Ödem und Nekrose anhand übertragener ROIs aus der T2-STIR und dem LGE definiert wurden, diente in Zusammenschau mit der Literatur zur Definition von visuellen Schwellenwerten für Ödem und Nekrose, an denen sich die visuellen Auswertungen dieser Arbeit orientierten (T1 nativ 1150ms, T2-Mapping 62ms, LG T1 350ms, MH 20ms). Es erfolgte eine visuelle Quantifizierung von Ödem, Nekrose, MVO, MH und Remote Myokard im T1 /T2- und T2*-Mapping bei allen N=88 Patienten. Die Ergebnisse wurden mit prognoserelevanten Parametern wie Infarktgröße, Myocardial Salvage Index (MSI), LVEF und EKG-Phänotyp (STEMI/NSTEMI) korreliert. Es wurden retrospektiv 1Standardabweichungs (SD)- und 2SD-Schwellenwerte vom Remote Myokard auf die erhobenen Messwerte angewendet. Ergebnisse Die Fläche des Ödems korrelierte in T1 nativ (r=0,82) und im T2-Mapping (r=0,85) in hohem Maße mit der T2-STIR Sequenz, wobei das Ödem durch das T1 nativ (p<0,01) signifikant und durch das T2-Mapping (p=0,048) grenzwertig signifikant unterschätzt wurde. In T1 nativ und im T2-Mapping konnten Referenzwerte für Ödem und Remote Myokard bestimmt werden (T1 nativ: 1249,0 ± 99,5ms vs. 1049,8 ± 77,7ms, p<0,01; T2-Mapping: 76,1± 8,9ms vs. 56,3 ± 4,2ms, p<0,01). Die T2 Zeit des Ödems korrelierte im Gegensatz zur T1-Zeit mit der LVEF und der Nekrosegröße. Die Fläche der Nekrose im LG-T1 und im LGE korrelierten höchstgradig miteinander (r=0,90). Im LG T1 lag die T1-Zeit der Nekrose bei 329,6 ± 37,9ms, die des Remote Myokards bei 430,1 ± 56,0ms (p<0,01). Das EZV im Infarktareal wurde mit 56,2 ± 8,6% und im Remote Myokard mit 34,6 ± 6,5% bestimmt (p<0,01). Das EG-T1 (N=37) zeigte sich bei der Darstellung der MVO gegenüber dem LG-T1 (N=36) leichtgradig sensitiver. In T1 nativ konnte zudem eine native MVO nachgewiesen werden (N=24). Für die MVO wurde in T1 nativ eine T1-Zeit von 972,6 ± 169,7ms, im EG-T1 von 636,2 ± 179,9ms und im LG-T1 von 456,3 ± 156,8ms bestimmt. Die T1 Zeit und Größe der MVO im EG-T1 und LG-T1 korrelierten mit der Nekrosegröße und der LVEF. Bei Nachweis einer MVO wiesen die Probanden einen geringeren MSI auf. Patienten mit MVO oder STEMI zeigten im T2 Mapping eine signifikant höhere T2 Zeit des Ödems. In T1 nativ und im LG T1 fanden sich hier hingegen keine signifikanten Unterschiede. Bei 21 der Probanden konnte eine MH nachgewiesen werden. Die T2*-Zeit der MH lag bei 17,5 ± 3,5ms. Das Auftreten einer MH stand im Zusammenhang mit einer größeren Nekrose, einem kleineren MSI und einer geringeren LVEF. Bei der retrospektiven Anwendung konnte ein +1SD Schwellenwert von 1127,5ms in T1 nativ und von 60,4ms im T2 Mapping das Ödem am besten differenzieren. Im LG T1 bevorzugten wir einen 1SD Schwellenwert von 374,1ms zur Differenzierung der Nekrose, wodurch diese jedoch im Vergleich zu den anderen Sequenzen häufiger nicht korrekt erkannt wurde. Auffällig war im LG-T1 eine höhere Variabilität der T1-Zeiten. Schlussfolgerung Das Ödem konnte mittels des nativen T1- und T2-Mappings dargestellt werden, wobei sich das T2-Mapping als überlegene Sequenz herausstellte. Es zeigte eine stärkere Übereinstimmung der bestimmten Ödemfläche mit dem Referenzverfahren. Die T2-Zeit des Ödems korrelierte im Gegensatz zur T1-Zeit mit prognoserelevanten Parametern wie der LVEF und der Nekrosegröße im LGE. Durch das LG-T1 gelang eine Quantifizierung der Nekrose, was eine höchstgradige Korrelation mit dem LGE belegte. Die MVO konnte nativ und im KM-verstärkten T1-Mapping nachgewiesen werden. Das EG-T1 zeigte sich hierbei dem LG-T1 leichtgradig überlegen. Im T2* Mapping gelang eine Darstellung der MH. Das Auftreten einer MVO oder MH standen im Zusammenhang mit prognoserelevanten Faktoren. Die T1 Zeit und Größe der MVO korrelierten zudem mit der LVEF und der Nekrosegröße. Patienten mit STEMI oder MVO zeigten signifikant höhere T2-Zeiten im Bereich des Ödems. Bei oben genannter Korrelation der T2-Zeit des Ödems mit der LVEF und der Nekrosegröße scheint somit die Höhe der T2-Zeit im Gegensatz zur T1-Zeit eine Aussage über das Ausmaß der Myokardschädigung zuzulassen. Ein +1SD-Schwellenwert stellte sich in T1 nativ und im T2-Mapping als zu favorisierender Schwellenwert zur Differenzierung des Ödems heraus. Eine höhere Variabilität der T1-Zeiten erschwerte im LG T1 eine schwellenwertbasierte Auswertung anhand eines 1SD Schwellenwertes.:1. Abkürzungsverzeichnis 1 2. Einleitung 2 2.1. Einführung 2 2.2. Der Myokardinfarkt 3 2.3. Grundlagen der Magnetresonanztomographie 4 2.4. Gewebscharakterisierung des akuten Myokardinfarkts 9 2.4.1. Das Ödem 9 2.4.2. Die Nekrose 10 2.4.3. Die mikrovaskuläre Obstruktion 12 2.4.4. Die intramyokardiale Hämorrhagie 13 2.5. Parametrisches Mapping 14 2.5.1. Parametrisches Mapping allgemein 14 2.5.2. T1-Mapping 15 2.5.3. Extrazellularvolumen 15 2.5.4. T2-Mapping 16 2.5.5. T2*-Mapping 17 2.6. Zielsetzung 17 3. Material und Methoden 18 3.1. Studienkollektiv 18 3.2. Datenakquisition 19 3.2.1. Datenakquisition des parametrischen Mappings 20 3.2.1.1. T1-Mapping 20 3.2.1.2. T2-Mapping 20 3.2.1.3. T2*-Mapping 20 3.2.2. Referenzverfahren 21 3.2.2.1. Ödemsensitive T2-gewichtete Bildgebung 21 3.2.2.2. Late Gadolinium Enhancement 21 3.2.3. Ergänzende Analysen 21 3.2.3.1. Linksventrikuläre Funktionsanalyse 21 3.3. Datenevaluation 22 3.3.1. Kalibrierende Voruntersuchung 23 3.3.2. Gewebscharakterisierung im parametrischen Mapping 23 3.3.2.1. T1-Mapping 23 3.3.2.2. T2-Mapping 25 3.3.2.3. T2*-Mapping 25 3.3.2.4. Schwellenwertbestimmung 26 3.3.3. Referenzverfahren 26 3.3.4. Ergänzende Analysen 27 3.3.4.1. Bestimmung der linksventrikulären Funktion 27 3.3.5. Abgeleitete Parameter 27 3.3.5.1. Myokardial Salvage Index 27 3.3.5.2. Extrazellularvolumen 27 3.4. Statistische Verfahren 28 4. Ergebnisse 29 4.1. Kalibrierende Voruntersuchung 29 4.2. Gewebscharakterisierung im parametrischen Mapping 32 4.2.1. Ergebnistabellen 32 4.2.2. Planimetrie der Gewebsdifferenzierung im parametrischen Mapping 33 4.2.2.1. Korrelation von parametrischem Mapping und Referenzverfahren 33 4.2.3. Relaxometrie der Gewebsdifferenzierung im parametrischen Mapping 37 4.2.3.1. Das Ödem im nativen T1- und T2-Mapping 37 4.2.3.2. Die Nekrose im kontrastmittelverstärkten T1-Mapping 43 4.2.3.3. Extrazellularvolumen 46 4.2.4. Mikrovaskuläre Obstruktion 46 4.2.5. Intramyokardiale Hämorrhagie 53 4.3. Schwellenwerte 57 4.4. Vergleich der EKG-Phänotypen STEMI vs. NSTEMI 63 5. Diskussion 64 5.1. Kalibrierende Voruntersuchung 64 5.2. Das Ödem im parametrischen Mapping 65 5.3. Die Nekrose im parametrischen Mapping 70 5.4. Extrazellularvolumen 74 5.5. Mikrovaskuläre Obstruktion 75 5.6. Intramyokardiale Hämorrhagie 79 5.7. Schwellenwerte 85 5.8. Schlussfolgerung 93 6. Zusammenfasssung der Arbeit 97 7. Literaturverzeichnis 100 8. Eigenständigkeitserklärung 111 9. Lebenslauf 112 10. Danksagung 113
6

Development of Advanced Acquisition and Reconstruction Techniques for Real-Time Perfusion MRI

Roeloffs, Volkert Brar 16 June 2016 (has links)
Diese Doktorarbeit befasst sich mit der methodischen Entwicklung von Akquisition- und Rekonstruktionstechniken zur Anwendung von Echtzeit-Bildgebungstechniken auf das Gebiet der dynamischen kontrastmittelgestützten Magentresonanztomographie. Zur Unterdrückung unerwünschter Bildartefakte wird eine neue Spoiling-Technik vorgeschlagen, die auf randomisierten Phasen der Hochfrequenzanregung basiert. Diese Technik erlaubt eine schnelle, artefaktfreie Aufnahme von T1-gewichteten Rohdaten bei radialer Abtastung. Die Rekonstruktion quantitativer Parameterkarten aus solchen Rohdaten kann als nichtlineares, inverses Problem aufgefasst werden. In dieser Arbeit wird eine modellbasierte Rekonstruktionstechnik zur quantitativen T1-Kartierung entwickelt, die dieses inverse Problem mittels der iterativ regularisierten Gauß-Newton-Methode mit parameterspezifischer Regularisierung löst. In Simulationen sowie in-vitro- und in-vivo-Studien wird Genauigkeit und Präzision dieser neuen Methode geprüft, die ihre direkte Anwendung in in-vitro-Experimenten zur "first-pass"-Perfusion findet. In diesen Experimenten wird ein kommerziell verfügbares Phantom verwendet, dass in-vivo-Perfusion simuliert und gleichzeitig vollständige Kontrolle über die vorherrschenden Austauschraten erlaubt.
7

Monitoring dynamic calcium homeostasis alterations by T₁-weighted and T₁-mapping cardiac manganese enhanced MRI (MEMRI) in a murine myocardial infarction model

Waghorn, Benjamin J. 12 January 2009 (has links)
Manganese has been used as a T₁-weighted MRI contrast agent in a variety of applications. Because manganese ions (Mn²) enter viable myocardial cells via voltage gated calcium channels, manganese-enhanced MRI (MEMRI) is sensitive to the viability and the inotropic state of the heart. In spite of the established importance of calcium regulation in the heart both prior to, and following, myocardial injury, monitoring strategies to assess calcium homeostasis in affected cardiac tissues are limited. This study implements a T₁-mapping method to obtain quantitative information both dynamically and over a range of MnCl₂ infusion doses. In order to optimize the current manganese infusion protocols, both dose dependent and temporal washout studies were performed. A non-linear relationship between infused MnCl₂ solution dose and increase in left ventricular free wall relaxation rate (∆R₁) was observed. Control mice also exhibited significant manganese clearance over time, with approximately 50% decrease of ∆R₁ occurring in just 2.5 hours. The complicated efflux time dependence possibly suggests multiple efflux mechanisms. Using the measured relationship between infused MnCl₂ and ∆R₁, absolute Mn concentration ICP-MS data analysis provided a means to estimate the absolute heart Mn concentration in vivo. We have shown that this technique has the sensitivity to observe or monitor potential Ca²+ handling alterations in vivo due to the physiological remodeling following myocardial infarction. Left ventricular free wall ∆R₁ values were significantly lower (P = 0.005) in the adjacent zone, surrounding the injured myocardial tissue, than healthy left ventricular free wall tissue. This inferred reduction in Mn concentration can be used to estimate potentially salvageable myocardium in vivo for future therapeutic treatment or evaluation of disease progression.
8

Regional MRI T1 mapping analysis of tobacco smoke exposed mouse lungs

Söderström, Gustav January 2019 (has links)
Chronic obstructive pulmonary disease is the fourth largest cause of death worldwide and the prevalence is predicted to increase even further to make it the third largest cause of death by 2020. The main cause of the disease is exposure to tobacco smoke. COPD is a complex disease and there is a strong need of better understanding of the pathogenetic mechanisms in order to come up with novel therapeutic interventions and preventive strategies. The golden standard to image the lungs today is to use computed tomography (CT) which is an imaging modality that involves ionizing radiation and could thus harm the patient, especially with repeated exposure. New techniques in the image acquisition of magnetic resonance imaging (MRI), an imaging modality that does not involve ionizing radiation, has emerged that allows for lung imaging. The work included segmentation of the lungs, image registration and partitioning of the lungs inorder to perform regional analysis. The results indicate that the mean value of the T1-parameter in the left and right lung is not affected to the same degree, where the left lung showed a greater decrease. The results also showed that the anterior parts of the lungs are not showing any statistically significant changes but the changes were instead seen in the center and posterior parts. Both lungs also showed results that indicate that the mean T1-value is recovered at the end of the longitudinal study, a phenomenon that couldn’t be explained and further studies have to be performed.
9

Signal Processing for Spectroscopic Applications

Gudmundson, Erik January 2010 (has links)
Spectroscopic techniques allow for studies of materials and organisms on the atomic and molecular level. Examples of such techniques are nuclear magnetic resonance (NMR) spectroscopy—one of the principal techniques to obtain physical, chemical, electronic and structural information about molecules—and magnetic resonance imaging (MRI)—an important medical imaging technique for, e.g., visualization of the internal structure of the human body. The less well-known spectroscopic technique of nuclear quadrupole resonance (NQR) is related to NMR and MRI but with the difference that no external magnetic field is needed. NQR has found applications in, e.g., detection of explosives and narcotics. The first part of this thesis is focused on detection and identification of solid and liquid explosives using both NQR and NMR data. Methods allowing for uncertainties in the assumed signal amplitudes are proposed, as well as methods for estimation of model parameters that allow for non-uniform sampling of the data. The second part treats two medical applications. Firstly, new, fast methods for parameter estimation in MRI data are presented. MRI can be used for, e.g., the diagnosis of anomalies in the skin or in the brain. The presented methods allow for a significant decrease in computational complexity without loss in performance. Secondly, the estimation of blood flow velo-city using medical ultrasound scanners is addressed. Information about anomalies in the blood flow dynamics is an important tool for the diagnosis of, for example, stenosis and atherosclerosis. The presented methods make no assumption on the sampling schemes, allowing for duplex mode transmissions where B-mode images are interleaved with the Doppler emissions.
10

A Quantitative Manganese-Enhanced MRI Method For In Vivo Assessment Of L-Type Calcium Channel Activity In Heart

Li, Wen 15 April 2011 (has links)
No description available.

Page generated in 0.0449 seconds