1 |
FUNCTIONAL CHARACTERIZATION OF CARDIAC PHENOTYPES BY MRI: APPLICATIONS IN DISEASED MOUSE MODELSJiang, Kai 03 June 2015 (has links)
No description available.
|
2 |
IRM du manganèse (MEMRI) : couplage à l'imagerie chimique par microsonde synchrotron pour optimiser l'imagerie fonctionnelle du transport neuronal / Manganese MRI (MEMRI) : coupling chemical imaging by synchrotron micoprobe to optimize the functional imaging of neuronal transport.Daoust, Alexia 13 November 2012 (has links)
Résumé Le manganèse (Mn2+) est un élément essentiel du corps humain. Ses propriétés paramagnétiques permettent son utilisation comme agent de contraste pour l'IRM (Mn-MRI ou MEMRI). Analogue du calcium (Ca2+), il pénètre les neurones essentiellement par les canaux calciques. Il est ensuite transporté le long des microtubules jusqu'aux synapses où il est libéré, puis capturé par les autres neurones. Ainsi, il peut rendre compte du transport axonal antérograde et rétrograde. L'approche MEMRI peut ainsi apporter des informations uniques sur la connectivité fonctionnelle cérébrale. Toutefois, deux problèmes limitent l'emploi de ce puissant outil d'imagerie in vivo : (i) A doses élevées, le Mn2+ est toxique pour l'organisme et peut provoquer une atteinte grave du système nerveux central, appelé manganisme. Les niveaux et les mécanismes de toxicité sont mal connus. (ii) Le mode de transport du manganèse dans l'approche MEMRI est mal connu. Afin d'apporter des éléments de réponse à ces deux problèmes, nous avons entrepris une étude couplant IRM et microscopie synchrotron pour mieux comprendre le comportement du Mn2+ in vivo. Nous avons précisé les distributions cellulaire et sub-cellulaire du Mn et d'autres métaux pour un modèle de cellules de type neuronal (lignée de neuroblastome N2A), pour des cultures primaires de neurones hippocampiques, mais aussi au niveau de coupes d'hippocampe de rats. En parallèle, nous avons étudié les effets du Mn sur le métabolisme cérébral par une technique de RMN-HRMAS du proton. Pour compléter ce travail, nous avons mis en œuvre l'imagerie MEMRI chez les souris KO MAP6 présentant un déficit d'une protéine stabilisatrice des microtubules pour évaluer la connectivité fonctionnelle du tract thalamo-cortical. Mots clés Hippocampe, MAP6, manganèse, métabolisme, métal, neurone, MRI, rongeurs, synchrotron. / Abstract Manganese (Mn2+) is an essential element for human body. The paramagnetic properties of Mn2+ permit it use as a contrast agent for MRI (Mn-MRI or MEMRI). Analogue of calcium (Ca2+), it enters neurons primarily by calcium channels. It is then transported along microtubules to the synapse where it is released and then captured by other neurons. Thus, it can account for the anterograde and retrograde axonal transport. The MEMRI approach can provide unique information about cerebral functional connectivity. Two problems limit the use of this powerful tool for in vivo imaging: (i) At high doses, Mn2+ is toxic to the body and can cause serious problem of the central nervous system, called manganism. The level and the mechanisms of toxicity are poorly understood. (ii) The mode of manganese transport in the MEMRI approach is unclear. To address these two issues, we undertook a study coupling MRI and synchrotron microscopy to study the Mn 2+ behavior in vivo. We characterized the cellular and subcellular distributions of Mn and other metals in "pseudo neurons" cell line N2A, primary cultures of hippocampal neurons, andin hippocampal slices from rats. In parallel, we studied the effects of Mn on brain metabolism by proton-HRMAS NMR . In parallel, weevaluated MEMRI in MAP6 KO mice which exhibit a deficit in microtubule stabilizing protein, to assess the functional connectivity of the thalamocortical tract. Key words hippocampus, MAP6, manganese, metabolism, metal, neuron, MRI, rodent, synchrotron.
|
3 |
Cartographie in vivo des remaniements anatomo-fonctionnels de l’architecture des réseaux neuronaux dans le système nerveux central au cours du développement par Imagerie du Tenseur de Diffusion et Imagerie renforcée par le manganèse / In vivo study of anatomo-functional changes in the central nervous system during development using diffusion tensor imaging and manganese enhanced magnetic resonance imagingDupont, Damien 08 February 2013 (has links)
L’objectif de cette thèse est de développer des méthodes IRM permettant d’étudier l’impact d’une ischémie focale transitoire sur le cerveau de rat nouveau-né. Les techniques utilisées sont l’imagerie à contraste renforcé par le manganèse (MEMRI), l’imagerie du tenseur de diffusion (DTI) ainsi que de façon préliminaire l’imagerie Q-ball (QBI). Le MEMRI après injection intra cérébrale a été utilisé afin d’étudier de manière dynamique le tractus cortico-thalamique, en parallèle le DTI a servi de marqueur de la structuration cérébrale. Les résultats ont montré une atteinte du tractus cortico-thalamique ipsi-latéral, sept et quatorze jours après ischémie. De manière générale le DTI a montré une structuration ralentie à la suite de l’ischémie. A partir de ces résultats la faisabilité d’une méthode d’acquisition rapide et de traitement de données Q-ball a été établie puis testée sur un animal immature. Les méthodes mises en place se sont révélées efficaces dans le suivi de la maturation cérébrale dans des conditions normales ainsi que pathologiques, ouvrant des perspectives d’études liées au développement cérébral. / The thesis aim is to develop MRI methods to study the impact of focal transient ischemia in neonatal rat brain. The principal techniques used are MEMRI (Manganese Enhanced MRI), DTI (Diffusion Tensor Imaging) and QBI (Q-Ball Imaging). MEMRI was used to observe in a dynamic way the cortico-thalamic manganese transport combined with the structural informations extracted from the DTI experiments. Results have shown a cortico-thalamic pathway disturbance, at seven and fourteen days after ischemia. Globally DTI results have shown a slowed brain structuration. From these results, the feasibility of a fast acquisition method and the post processing steps of Q-ball protocol was established and applied in an immature rat. The different MRI protocols developed during this thesis have shown good efficiency to follow the rat brain maturation, in healthy and pathological conditions, thus opening new perspectives for brain development studies.
|
4 |
Traitement cérébral d'odeurs biologiquement signifiantes, révélé chez le rat par imagerie RMN fonctionnelle du manganèse / Central processing of behaviorally relevant odors in the awake rat, as revealed by Manganese-enhanced MRILehallier, Benoist 28 June 2011 (has links)
L'objectif de cette thèse est d'utiliser MEMRI (manganese-enhanced magnetic resonance imaging) pour étudier le traitement d'odeurs signifiantes dans le cortex olfactif primaire de rats dans les conditions les plus proches de la perception naturelle. MEMRI est une méthode fondée sur la détection d'un agent de contraste fonctionnel et rémanent de l'activité neuronale, le manganèse, qui a prouvé son efficacité pour montrer le traitement différencié d'odeurs dans le bulbe olfactif chez l'animal vigile. Cependant, cette technique a été surtout utilisée pour tracer les voies neuronales, mais relativement peu pour explorer des fonctions sensorielles. C'est pourquoi nous avons conduit deux études visant l'une à définir les conditions d'application du manganèse et l'autre à optimiser le traitement des images MEMRI, avant d'aborder la question biologique proprement dite. S'appuyant sur ces développement méthodologiques, nous avons ensuite utilisé MEMRI pour étudier les variations du traitement d'odeurs signifiantes (odeurs de nourriture et de prédateur comparées à une situation de contrôle) dans le cortex olfactif primaire de rats. Nous avons montré que le traitement cérébral d'une odeur de prédateur est différent de celui de la situation de contrôle dans le cortex olfactif primaire. Nous avons confirmé ce résultat par immunomarquage Fos dans le cortex piriforme. Mis ensemble, les résultats de MEMRI et Fos suggèrent que le traitement cérébral d'une odeur peut varier en terme de taille de populations de neurone recrutés ainsi qu'en termes d'intensité de l'activation de ces neurones. Enfin, les résultats MEMRI montrent qu'un message olfactif crucial, pour la survie, est traité asymétriquement dans le cerveau. Les avancées méthodologiques et scientifiques qu'apporte cette thèse ouvrent la voie à une meilleure compréhension du traitement cérébral des odeurs. / The aim of this thesis was to use MEMRI (manganese-enhanced magnetic resonance imaging) for studying the processing of behaviorally significant odors in the rat primary olfactory cortex, under conditions close to natural perception in awake animals. MEMRI is a method based on the detection of o functional and remanent contrast agent, manganese, which has proved to be valuable dor studying odor processing in the olfactory bulb. However , this method has mainly been used to trace neuronal pathways, but seldom to explore sensory functions. Here, we have conducted two studies to define the conditions of application of manganese and to optimize processing of MEMRI images. Based on these methodological developments, we have then used MEMRI to investigate the activation of central olfactory structures following exposure of awake rats to biologically relevant odors (food and predator odors compared to a control situation). MEMRI revealed that a predator is processed differently from the control situation in the primary olfactory cortex. Fos immunolabeling in the anterior piriform cortex corroborated this result. Altogether, MEMRI and Fos results suggest that olfactory processing may rely on both the intensity of activation and the size of neuronal populations recruited. Finally, MEMRI revealed that the olfactory message, crucial for survival, is asymmetrically processed in the brain. Methodological and scientific advances brought by this thesis will be useful for better understanding brain olfactory processing.
|
5 |
IRM du manganèse (MEMRI) : couplage à l'imagerie chimique par microsonde synchrotron pour optimiser l'imagerie fonctionnelle du transport neuronalDaoust, Alexia 13 November 2012 (has links) (PDF)
Résumé Le manganèse (Mn2+) est un élément essentiel du corps humain. Ses propriétés paramagnétiques permettent son utilisation comme agent de contraste pour l'IRM (Mn-MRI ou MEMRI). Analogue du calcium (Ca2+), il pénètre les neurones essentiellement par les canaux calciques. Il est ensuite transporté le long des microtubules jusqu'aux synapses où il est libéré, puis capturé par les autres neurones. Ainsi, il peut rendre compte du transport axonal antérograde et rétrograde. L'approche MEMRI peut ainsi apporter des informations uniques sur la connectivité fonctionnelle cérébrale. Toutefois, deux problèmes limitent l'emploi de ce puissant outil d'imagerie in vivo : (i) A doses élevées, le Mn2+ est toxique pour l'organisme et peut provoquer une atteinte grave du système nerveux central, appelé manganisme. Les niveaux et les mécanismes de toxicité sont mal connus. (ii) Le mode de transport du manganèse dans l'approche MEMRI est mal connu. Afin d'apporter des éléments de réponse à ces deux problèmes, nous avons entrepris une étude couplant IRM et microscopie synchrotron pour mieux comprendre le comportement du Mn2+ in vivo. Nous avons précisé les distributions cellulaire et sub-cellulaire du Mn et d'autres métaux pour un modèle de cellules de type neuronal (lignée de neuroblastome N2A), pour des cultures primaires de neurones hippocampiques, mais aussi au niveau de coupes d'hippocampe de rats. En parallèle, nous avons étudié les effets du Mn sur le métabolisme cérébral par une technique de RMN-HRMAS du proton. Pour compléter ce travail, nous avons mis en œuvre l'imagerie MEMRI chez les souris KO MAP6 présentant un déficit d'une protéine stabilisatrice des microtubules pour évaluer la connectivité fonctionnelle du tract thalamo-cortical. Mots clés Hippocampe, MAP6, manganèse, métabolisme, métal, neurone, MRI, rongeurs, synchrotron.
|
6 |
NMR Characterization of Pathological Disease States: Monitoring Response to Single-Dose Radiotherapy in a RIF-1 Tumor Model and the Role of Spreading Depression in the Evolution of Ischemic StrokeHenning, Erica C. 22 April 2005 (has links)
The research presented within this dissertation focused on two major areas of research: monitoring the response to single-dose radiotherapy in a RIF-1 tumor model and the role of cortical spreading depression in the evolution of ischemic stroke.
For the research in the first half of this dissertation, quantitative MRI was performed to investigate the spatial correlation between the apparent diffusion coefficient (ADC), spin-spin relaxation times (T2), and proton density (M0) in murine radiation-induced fibrosarcoma (RIF-1) tumors following single-dose (1000cGy) radiotherapy using the k-means (KM) algorithm. An in-depth comparison between KM-derived volume estimates and conventional histology via the hematoxylin-eosin (H&E) staining procedure (for identification of viable tumor versus necrosis), as well as via hypoxic-inducible factor-1alpha (HIF-1alpha) immunohistochemistry (for identification of regions of hypoxia versus well-oxygenated tissue) was performed. The results of this study demonstrated that multispectral (MS) analysis provides: (1) an improved tissue segmentation method over results obtained from conventional single-parameter approaches, (2) subdivision based on the degree of necrosis, as well as delineation between well-oxygenated and hypoxic viable tissue, (3) good correlation with both H&E staining and HIF-1alpha immunohistochemistry, and (4) a method for monitoring the range of tissue viability as a function of time post-treatment, with the potential for predicting therapeutic efficacy.
For the research in the second half of this dissertation, manganese-enhanced MRI (MEMRI) was employed for the characterization of both experimental and pathological cortical spreading depression (CSD). In order to determine the utility of manganese ions (Mn2+) as a marker for spreading depression (SD), experimental SD was elicited by chemical stimulation (KCl application to exposed rat cortex) and compared with control conditions. This study demonstrated that (1) Mn2+ is a more accurate marker for SD than DWI or T2* methods, (2) cortical restriction of MEMRI enhancement supports the contention that apical dendrites are necessary for SD propagation. (3) subcortical enhancement was a result of cortical-subcortical neuronal connectivity. Based on these results, preliminary experiments involving the study of SD in ischemia using Mn2+ were performed. Initial results indicate: (1) MEMRI may provide a method for estimating the likelihood of progression to infarction at acute timepoints post onset of stroke. These studies provide a foundation for further investigation into the role of SD in stroke, and the application of Mn2+ towards the design of therapeutic strategies targeting SD inhibition.
|
7 |
In-vivo Tracing of Vagal Projections in the Brain with Manganese Enhanced Magnetic Resonance ImagingSteven T. Oleson (5930780) 17 January 2019 (has links)
<p>Current challenges in neuronal tract tracing include sacrificing the animal, detailed sectioning of the brain, and cumbersome reconstruction of slices to gather information, which are very tedious, time consuming, and have low-throughput. In this regard, Manganese-enhanced Magnetic Resonance Imaging (MEMRI) has been an emerging methodology for fiber tract tracing <i>in vivo</i>. <i></i>The manganese ion (Mn<sup>2+</sup>) is paramagnetic and is analogous to calcium ions (Ca<sup>2+</sup>), which allows it to enter excitable cells through voltage-gated calcium channels, thereby reporting cellular activity in T<sub>1</sub>-weighted MR images<i>. </i>Moreover, once the Mn<sup>2+</sup>enters the cell, it will move along the axon by microtubules, release at the synapse, and then uptake by post-synaptic neurons, hence revealing the pathway of Mn<sup>2+ </sup>transportation. While most MEMRI neuronal tracing studies have focused on mapping circuitries within the brain, MEMRI has rarely been applied to trace peripheral nerve projections into the brain. </p><p>In this thesis, I will propose the use of MEMRI to trace vagal nerve projections into the central nervous system by showing enhancement of neuronal pathways with an optimized protocol. This protocol demonstrates <i>in vivo </i>monitoring of manganese transport into the brain from the nodose ganglion and shows how the enhancement in MR images can be promoted with vagus nerve stimulation (VNS). Additionally, I will present preliminary findings, for the very first time, that show the downstream projection of the sympathetic pathway from the brainstem. In sum, the technique presented in this thesis will shed light on the use of MEMRI to study the functional results of using clinically-based VNS settings</p>
|
8 |
Cartographie in vivo des remaniements anatomo-fonctionnels de l'architecture des réseaux neuronaux dans le système nerveux central au cours du développement par Imagerie du Tenseur de Diffusion et Imagerie renforcée par le manganèseDupont, Damien 08 February 2013 (has links) (PDF)
L'objectif de cette thèse est de développer des méthodes IRM permettant d'étudier l'impact d'une ischémie focale transitoire sur le cerveau de rat nouveau-né. Les techniques utilisées sont l'imagerie à contraste renforcé par le manganèse (MEMRI), l'imagerie du tenseur de diffusion (DTI) ainsi que de façon préliminaire l'imagerie Q-ball (QBI). Le MEMRI après injection intra cérébrale a été utilisé afin d'étudier de manière dynamique le tractus cortico-thalamique, en parallèle le DTI a servi de marqueur de la structuration cérébrale. Les résultats ont montré une atteinte du tractus cortico-thalamique ipsi-latéral, sept et quatorze jours après ischémie. De manière générale le DTI a montré une structuration ralentie à la suite de l'ischémie. A partir de ces résultats la faisabilité d'une méthode d'acquisition rapide et de traitement de données Q-ball a été établie puis testée sur un animal immature. Les méthodes mises en place se sont révélées efficaces dans le suivi de la maturation cérébrale dans des conditions normales ainsi que pathologiques, ouvrant des perspectives d'études liées au développement cérébral.
|
9 |
NEUROACTIVE AGENTS-MEDIATED CHANGES IN NEURONAL NETWORK ACTIVITY CONTROLS SUSCEPTIBILITY TO SUDDEN UNEXPECTED DEATH IN EPILEPSY (SUDEP)Kommajosyula, srinivasa prasad 01 May 2017 (has links)
The incidence of sudden death is higher in epileptic people compared to the general population and sudden unexpected death in epilepsy (SUDEP) is second only to stroke in the years of potential life loss among the major neurological disorders. In the majority of observed human SUDEP cases, respiratory dysfunction post-seizure is shown to be the primary initiating event leading to cardiac asystole and death. During seizures, several neuroactive agents are shown to be released, including serotonin and adenosine. Previous research has shown the effects of these neuroactive agents on seizure and respiratory function independently. A role of adenosine in triggering death post-seizures in a chemically-induced seizure model has been shown, but the mechanism of death is not clear. Studies from our lab have shown the role of fluoxetine (selective serotonin-reuptake inhibitor) in preventing seizure-induced respiratory arrest (S-IRA) in DBA/1 mouse model of SUDEP, but the neuronal networks mediating S-IRA and the brain structures involved in the fluoxetine-mediated blockade of S-IRA are not known. Data from human SUDEP imaging has underlined the role of periaqueductal gray (PAG), which is also implicated in audiogenic seizure (AGSz) network and respiratory modulation in other models. The goal of my dissertation is to understand the mechanisms by which adenosine could cause SUDEP susceptibility, the neuronal networks in the DBA/1 mice that lead to S-IRA and how fluoxetine modulates the neuronal activity at these neuronal network structures to prevent S-IRA. A better understanding of these mechanisms may lead to development of potentially important targeted therapies to prevent SUDEP in future. In the first aim, I have examined the role of adenosine in mediating SUDEP. Genetically epilepsy prone rats (GEPR-9s) exhibit AGSz but the incidence of death post-seizure is very low. I tested whether decreasing adenosine breakdown could increase the incidence of death in GEPR-9s. My study shows that adenosine metabolic blockers, which prevent the metabolism of released adenosine during seizures significantly increased the duration of respiratory dysfunction, post-ictal depression, decreased the peripheral oxygen saturation and subsequently, increased the incidence of death post-seizure in GEPR-9s. These findings on the role of adenosine and role of specific adenosine receptors in SUDEP are required to be validated in another SUDEP model. This formed the core of my second specific aim and since DBA/2 mice are susceptible to AGSz, and after seizures a large percent of these DBA/2 mice show S-IRA, while the rest don’t show S-IRA. Therefore, I tested if adenosine antagonism could prevent S-IRA post AGSz in DBA/2 mice, and found that caffeine a non-selective adenosine antagonist significantly decreased the incidence of S-IRA post AGSz. Administration of adenosine metabolic blockers increased the incidence of S-IRA in DBA/2 mice similar to GEPR-9s. Parallel studies from our lab have shown that administration of selective A2a antagonist but not A1 antagonist also decreased S-IRA incidence in DBA/2 mice. These data from GEPR-9s and DBA/2 mice suggests for a potentially important role of selective adenosine receptors in mediating the susceptibility to SUDEP by acting on respiratory function. In the third specific aim, I have examined the role of subcortical neuronal network structures including the PAG in mediating S-IRA and the quantitative differences in respiratory function elicited by electrical stimulation at PAG between DBA/1 and C57 mice. While the role of neuroactive agents in SUDEP has received attention, the neuronal networks mediating SUDEP in pre-clinical models are not known, specifically in DBA/1 mice an established SUDEP model susceptible to AGSz. The role of subcortical neuronal network structures including PAG in AGSz has been well-studied in other AGSz models. To decipher the neuronal networks that lead to S-IRA in DBA/1 mice, I exposed both DBA/1 mice that show AGSz and S-IRA and C57 mice that are non-susceptible to AGSz to acoustic stimulus and performed an ex vivo manganese-enhanced magnetic resonance imaging (MEMRI). Data analyses revealed the role of several brain structures in auditory, sensorimotor-limbic, respiratory networks and serotonergic raphe nuclei in DBA/1 mice. Of interest the PAG, a region implicated in other models of AGSz, respiratory modulation and human SUDEP has shown a significant increase in MEMRI signal intensity compared to C57 mice. These findings formed the rationale for the fourth specific aim to examine the quantitative differences in PAG-mediated respiratory modulation in response to electrical stimulation between C57 and DBA/1 mice. The threshold of current needed at PAG for a significant increase in respiration in DBA/1 mice is four times greater than C57 mice. Electrical stimulation at amygdala (AMG) showed marginal differences between DBA/1 and C57 mice suggesting the least possible pathological role of AMG in DBA/1 mice to mediate S-IRA. These data support a reduced respiratory function of PAG in DBA/1 mice compared to C57 mice. Taken together, these findings suggest that a reduced respiratory function of PAG in DBA/1 mice could lead to S-IRA and support a potentially critical compensatory role of PAG in DBA/1 mice. In the fifth specific aim, I examined the effect of fluoxetine on the subcortical neuronal network structures in DBA/1 mice that may lead to blockade of S-IRA. Fluoxetine has been shown to prevent S-IRA in DBA/1 mice effectively, but where in the brain does this drug act to prevent the susceptibility to SUDEP in DBA/1 mice is not known. To address this question, I used ex vivo MEMRI in DBA/1 mice that received fluoxetine at a dose which selectively blocks S-IRA but not AGSz. Fluoxetine treated DBA/1 mice that didn’t show S-IRA have shown a potential compensatory increase in activity at several sub-cortical structures including PAG compared to DBA/1 mice that showed S-IRA. In summary, these data suggest the PAG as a critical compensatory structure among the other sub-cortical neuronal network structures identified for SUDEP in this mice model. Differential modulation of these subcortical neuronal network structures by adenosine or serotonin released during seizures could determine the susceptibility to SUDEP.
|
10 |
IDEOLOGY IN MEDIA TRANSLATION: A CASE STUDY OF MEMRI's TRANSLATIONSAl Ghannam, Abdulaziz G. 14 November 2019 (has links)
No description available.
|
Page generated in 0.0287 seconds