Si les débordements de réseaux unitaires sont reconnues comme étant un facteur important de l'impact environnemental du traitement des eaux usées urbaines, l'efficacité de l'implantation de bassins de rétention (BR) comme solution n'en demeure pas moins un questionnement. En effet, de plus en plus d'études tendent à prouver que l'impact de la vidange des BR sur l'efficacité de traitement d'une usine, et donc l'impact sur l'environnement, peut être négatif. L'interdisciplinarité et l'échelle géographique et temporelle de la problématique rendent l'appréhension de la problématique difficile par la seule mesure "in situ". L'intégration de plusieurs modèles du système urbain d'eaux usées se révèle être un outil puissant dans ce contexte. La simulation de différents scénarios amène à mieux anticiper les problèmes liés à la gestion des eaux usées, en temps de pluie comme en temps sec. Par conséquent, les coûts économiques et écologiques associés soit à la mise en place de nouvelles infrastructures, soit à la prise de décision concernant les stratégies de gestion du système, peuvent être optimisés. Il devient ainsi nécessaire de produire des modèles performants décrivant la qualité des eaux tout au long de leur cheminement. Les données sur le comportement des polluants dans les bassin de rétention sont peu nombreuses et la caractérisation des eaux retournées à l'usine de traitement est rarement étudiée. Par conséquent, si les connaissances des phénomènes en jeu sont souvent supposées, leur observation reste assez rare. Une partie importante du projet a donc été consacrée à la réalisation d'une campagne d'échantillonnage. Ce type d'échantillonnage s'est révélé être un exercice complexe et très contraignant en raison de l'imprévisibilité des événements orageux. L'objectif de cette campagne était de récolter des données en entrée et en sortie de bassin de rétention, principalement en ce qui concerne la matière en suspension, la demande chimique en oxygène et la distribution des vitesses de chute. Les résultats ont montré des dynamiques typiques de vidange révélant une forme en "U" des concentrations en polluants. Cette forme souligne trois phases appelées "initiale, milieu et finale" où chacune est caractérisée par une fourchette de concentrations et une distribution de vitesses de chute de particule qui lui est propre. De manière plus générale, il a été observé que plus les concentrations en MeS augmentent, plus la distribution des vitesses de chute est "lourde". Ces données couplées à des mesures en temps sec dans le collecteur et dans un bassin de décantation ont permis de comprendre les phénomènes en jeu, les interactions possibles entre les systèmes, et d'établir une structure solide pour le modèle. La littérature scientifique contient un grand nombre d'études de modélisation de la qualité de l'eau concernant les procédés de traitement. Cependant, elle est moins riche oncernant la description de la qualité des eaux en réseau et assez pauvre concernant la description de la qualité des eaux stockées en réseau ou en bassin de rétention. Les quelques modèles de BR existants décrivent assez simplement la décantation et la resuspension, qui sont pourtant les phénomènes dominant de ces systèmes. Ces modèles ont rarement été validés avec des données réelles car ces phénomènes sont difficiles à observer et à quantifier. Le projet visait donc à développer un modèle de bassin de rétention décrivant le comportement de la matière en suspension et de la demande chimique en oxygène à l'effluent d'un bassin de rétention (retour des eaux à l'usine) de sorte qu'il soit compatible avec les modèles de boue activées de type ASM de VInternational Water Association. La description des phénomènes de décantation et de resuspension est basée sur un fractionnement en classes de particules ayant différentes vitesses de chute. Ce fractionnement est directement issu de mesures de terrain réalisées en vue d'observer la variation de la distribution des vitesse de chute. Les effets d'un puits de pompage sur la sédimentation et la resuspension sont aussi décrits. Deux événements récoltés ont servi à la calibration du modèle et un autre a été utilisé pour sa validation. Cette étape est d'importance car elle n'a jamais été réalisée sur un modèle de BR. L'objectif final du modèle était qu'il soit intégré dans un système plus global (réseau - usine - rivière). Différents scénarios de gestion des vidanges de bassins de rétention ont mis en évidence les interactions entre les différents sous-systèmes en termes de masse de MeS et de masse de classes de particules. En effet, l'étude de l'évolution de la distribution des vitesses de chute des particules le long de la chaine de l'eau peut être une information utile pour anticiper les problèmes au traitement secondaire. Par exemple, une plus grande fraction de particules ayant une forte vitesse de chute peut engendrer : 1) une augmentation du temps d'hydrolyse des particules dans un système par boues activée ; ou 2) un plus grand risque de colmatage des biofiltres. Une meilleure compréhension de ces interactions peut permettre la mise en place de règles d'opération et de contrôle plus efficaces pour diminuer l'impact des rejets d'eaux usées sur l'environnement.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/23858 |
Date | 19 April 2018 |
Creators | Maruejouls, Thibaud |
Contributors | Vanrolleghem, Peter A., Lessard, Paul |
Source Sets | Université Laval |
Language | French |
Detected Language | French |
Type | thèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat |
Format | xx, 309 p., application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.0028 seconds