Return to search

Problema do subgrupo oculto em grupos nilpotentes / Hidden subgroup problem in nilpotent groups

Made available in DSpace on 2015-03-04T18:50:59Z (GMT). No. of bitstreams: 1
Thesis_Tharso_Dominisini_Fernandes_2008.pdf: 433414 bytes, checksum: 974d6b0bd3b829341f4f36f9c8d29a72 (MD5)
Previous issue date: 2008-03-13 / Fundação Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro / Quantum computers may solve certain problems asymptotically faster than the classical computers. Quantum algorithms, such as Shor s algorithm, may be considered as a particular case of the Hidden Subgroup Problem (HSP). The HSP consists in finding a subgroup H of a group G by evaluating a function f, which is constant in cosets of H and distinct for each coset. The HSP for Abelian groups is efficiently solved in a quantum computer, but is quantum computers can solve the HSP in non-Abelian groups efficiently? This question has been regularly discussed by the scientific community due to the importance of some applications, such as the graph isomorphism problem and the short vector in a lattice. In this dissertation we review the Ivanyos et al. (2007a) that address HSP in nilpotent groups of class 2. We make a brief review on Quantum Computing; we address some characteristics of nilpotent groups and solvable groups, with special attention to nilpotent groups of class 2; we discuss the standard method of solution of the HSP in Abelian groups; we present the main characteristics of the polycyclic sequences and important reductions of the HSP in classes of nilpotent groups using the properties of polycyclic sequences. Finally, we present an efficient algorithm to solve the HSP in nilpotent groups of class 2. / Computadores quânticos prometem resolver certos problemas assintoticamente mais rápido do que os computadores clássicos. Algoritmos quânticos, como o algoritmo de Shor, podem ser considerados casos particulares do chamado Problema do Subgrupo Oculto(PSO). O PSO consiste em encontrar um subgrupo H de um grupo G por meio de avaliações de uma função f que é constante em classes laterais de H e distinta em classes laterais diferentes. O PSO em grupos abelianos é resolvido eficientemente em um computador quântico, mas será que os computadores quânticos podem resolver o PSO em grupos não abelianos? Esta questão tem sido discutida regularmente pela comunidade científica devido a importantes aplicações, como é o caso do problema de isomorfismo de grafos e do problema do menor vetor em um reticulado. Nesta dissertação é feita uma revisão do trabalho de Ivanyos et al. (2007a), o qual apresenta uma solução para o PSO em grupos nilpotentes de classe 2. Com esta finalidade, é elaborada uma breve revisão sobre a Computação Quântica; são mostradas algumas características dos grupos nilpotentes e dos grupos solúveis, dando uma atenção especial aos grupos nilpotentes de classe 2; é exposto o método padrão de solução do PSO em grupos abelianos; também são exibidas as principais características de sequencias policıclicas e reduções¸de grupos nilpotentes usando as propriedades de sequencias policıclicas

Identiferoai:union.ndltd.org:IBICT/oai:tede-server.lncc.br:tede/83
Date13 March 2008
CreatorsFernandes, Tharso Dominisini
ContributorsPortugal, Renato, Garcia, Eduardo Lúcio Mendes, Kritz, Mauricio Vieira, Lavor, Carlile Campos, Leal, Guilherme Augusto de La Roque
PublisherLaboratório Nacional de Computação Científica, Programa de Pós-Graduação em Modelagem Computacional, LNCC, BR, Serviço de Análise e Apoio a Formação de Recursos Humano
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações do LNCC, instname:Laboratório Nacional de Computação Científica, instacron:LNCC
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0154 seconds