<p>Thyroid growth and function is partly regulated by growth factors binding to receptors on the cell surface. In the present thesis, the transforming growth factor-β (TGF-β) superfamily members have been studied for their role in regulation of growth and differentiation of both normal and neoplastic thyroid epithelial cells.</p><p>TGF-β1 is a negative regulator of thyrocyte growth and function. However, the importance of other TGF-β superfamily members has not been fully investigated. TGF-β1, activin A, bone morphogenetic protein (BMP)-7 and their receptors were found to be expressed in porcine thyrocytes. In addition to TGF-β1, activin A was also found to be a negative regulator of thyroid growth and function, and both stimulated phosphorylation and nuclear translocation of Smad proteins. Furthermore, TGF-β1 and epidermal growth factor (EGF) demonstrated a synergistic negative effect on thyrocyte differentiation. Simultaneous addition of the two factors resulted in a loss of the transepithelial resistance and expression of the epithelial marker E-cadherin. This was followed by a transient expression of N-cadherin.</p><p>Despite the extremely malignant character of anaplastic thyroid carcinoma (ATC) tumor cells, established cell lines are still responsive to TGF-β1. A majority of the cell lines were also found to be growth inhibited by BMP-7. BMP-7 induced cell cycle arrest of the ATC cell line HTh 74 in a dose- and cell density-dependent manner. This was associated with upregulation of p21<sup>CIP1</sup> and p27<sup>KIP1</sup>, decreased cyclin-dependent kinase (Cdk) activity and hypophosphorylation of the retinoblastoma protein (pRb). TGF-β1, and to some extent also BMP-7, induced the expression of N-cadherin and matrix metalloproteinase (MMP)-2 and -9. Stimulation of HTh 74 cells with TGF-β1 increased the migration through a reconstituted basement membrane indicating an increased invasive phenotype of the cells.</p><p>Taken together, these data show that TGF-β superfamily members not only affect growth and function of normal thyroid follicle cells but may also, in combination with EGF, play a role in cell dedifferentiation. This study additionally suggests that the TGF-β superfamily members may be important for the invasive properties of ATC cells.</p>
Identifer | oai:union.ndltd.org:UPSALLA/oai:DiVA.org:uu-1624 |
Date | January 2002 |
Creators | Franzén, Åsa |
Publisher | Uppsala University, Department of Genetics and Pathology, Uppsala : Acta Universitatis Upsaliensis |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, text |
Relation | Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, 0282-7476 ; 1114 |
Page generated in 0.0026 seconds