Return to search

Uso das técnicas de implantação iônica e de sputtering para adição de Au em nanotubos de TiO2 : aplicação em processos fotocatalíticos

A investigação das possibilidades do uso da energia solar tem se intensificado nas últimas décadas. Existem muitos desafios na busca de melhorar a eficiência de conversão de energia solar em outras formas de energia. Os diferenciados comportamentos apresentados por dispositivos semicondutores nanoestruturados tem viabilizado processos fotocatalíticos sob irradiação solar. Encontrar um semicondutor estável, com a possibilidade de expandir a eficiência das reações fotocatalíticas, para o espectro visível da radiação solar, é um dos principais desafios em muitas investigações. Dado um semicondutor específico dióxido de titânio (TiO2), algumas modificações são fundamentais tanto para otimizar o semicondutor e expandir seu espectro de absorção para o visível, quanto para aumentar a eficiência de separação de carga na interface entre as fases sólido e líquido. Esse trabalho tem como objetivo investigar as propriedades de nanotubos de TiO2 via carregamento com nanopartículas de Au utilizando dois métodos físicos para tal: i) implantação iônica e ii) pulverização catódica (DC Magnetron Sputtering). Os materiais assim obtidos resultaram em distintas características estruturais, morfológicas, superficiais e óticas que foram investigadas através da realização de variadas técnicas. A estabilidade temporal destes materiais, quando utilizados em processos fotocatalíticos para a produção de H2, também foi investigada Os nanobubos de TiO2 sem adição de nanopartículas de Au apresentaram uma maior estabilidade, mas menor atividade fotocatalítica comparado aos nanotubos carregados com nanopartículas de Au. Os nanotubos carregados com nanopartículas pelo método de implantação iônica apresentaram um aumento de até 7 vezes na produção fotocatalítica de H2, comparadas a amostra livre de Au. A atividade fotocatalítica das amostras submetidos a carregamento de Au pela técnica de DC Magnetron Sputtering tiveram um amento de até 40 vezes comparadas a amostra livre de Au. Apesar dos NTs carregados com NPs de Au por DC Magnetron Sputtering apresentarem uma maior atividade fotocatalítica os NTs carregados com Au por implantação apresentaram maior estabilidade temporal, reproduzindo a mesma produção de H2 em 4 ciclos de 24 horas de ensaios fotocatalíticos, enquanto os NTs carregados com Au por DC Magnetron Sputtering tiveram uma queda maior que 40% na produção de H2 no mesmo número de ciclos. A queda na produção de H2 verificada na amostra carregada por DC Magnetron Sputtering é justificada pela perda de mais de 80% do Au depositado. / In the last decades, several publications have been shown different approaches to use solar energy. There are many challenges in order to improve the efficiency of solar energy conversion to other types of energy. The unique behaviour of the nanostructured semiconductors devices has allow the photocatalytic process under solar irradiation. However, the search for a stable semiconductor that can improve the efficiency of photocatalytic reaction under the visible spectrum is one of the current biggest challenge. Among several semiconductors, dioxide titanium (TiO2) is one of the most promising candidates. However, in order to expand the visible absorption and increase the charge separation efficiency is require modified the TiO2 structure. This work aimed the investigation of TiO2 nanotubes properties loaded with Au nanoparticles via two physics approaches: i) ion implantation and ii) sputtering deposition (DC Magnetron sputtering). The samples produced presented different structural, morphological and optical properties that were investigated thought several techniques The temporal stability of these materials, when submitted to photocatalytic process for hydrogen production also has been investigated. TiO2 nanotubes without Au nanoparticles showed a better stability and a lower photocatalytic activity when compared with the nanotubes with Au nanoparticles. The nanotubes loaded with Au nanoparticles by ion implantation presented an increase of up to 7 times in the photocatalytic production of H2, compared to the Au free sample. The photocatalytic activity of samples submitted to Au loading by the Magnetron Sputtering DC technique had an increase of up to 40 times compared to the Au free sample. Although NTs loaded with Au NPs by DC Magnetron Sputtering exhibited a higher photocatalytic activity, the Au-loaded NTs by ion implantation presented higher temporal stability, reproducing the same H2 production in 4 cycles of 24 hours of photocatalytic tests, while NTs loaded with Au by DC Magnetron Sputtering had a drop greater than 40% in H2 production in the same number of cycles. The decrease in H2 production verified in the sample loaded by DC Magnetron Sputtering is justified by the loss of more than 80% of the deposited Au.

Identiferoai:union.ndltd.org:IBICT/oai:lume.ufrgs.br:10183/172107
Date January 2017
CreatorsMachado, Guilherme Josué
ContributorsAmaral, Livio
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.002 seconds