Since the rediscovery of carbon nanotubes (CNTs) due to the publication of Sumio Iijima's article Helical microtubules of graphitic carbon in the magazine Nature in 1991 the interest in carbon nanotubes has rapidly increased.
This bachelor thesis also deals with this popular material with the aim to functionalize CNTs for further uses in the microelectronic industry. A promising approach is the functionalization of the CNTs with metal nanoparticles or metal films. To achieve this, one can perform an atomic layer deposition (ALD) on CNTs. In the present work the Trimethylaluminum (TMA) ALD is the chosen process for the functionalization of the CNTs, which will be studied here.
Since the available knowledge on the CNT-functionalization by gas phase reactions is very limited, a theoretical study of possible reaction pathways is necessary. Those studies are carried out with two modern quantumchemical programs, Turbomole and DMol³, which are described together with an introduction into Density Functional Theory, as well as an introduction of CNTs and the ALD process. A basic model of a CNT with a Single Vacancy defect, which had been selected according to the demands of the studies, is introduced.
Because the TMA ALD process requires hydroxyl groups as its starting point, not only is the performance of a TMA ALD cycle on a CNT studied, but also reactions which result in the CNTs owning of hydroxyl groups. Consequently, this bachelor thesis will focus on two di erent aspects: The performance of one TMA ALD cycle and the study of possible educts for the TMA ALD process. This study of the educts includes possible structures which can be formed when a CNT comes into contact with air.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:ch1-qucosa-103907 |
Date | 29 January 2013 |
Creators | Förster, Anja |
Contributors | TU Chemnitz, Fakultät für Naturwissenschaften, Dr. Jörg Schuster, Dr. Joachim Friedrich, Prof. Dr. Stefan E. Schulz |
Publisher | Universitätsbibliothek Chemnitz |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:bachelorThesis |
Format | application/pdf, text/plain, application/zip |
Page generated in 0.0018 seconds