Return to search

The Impact of mTORC2 Signaling on the Initiation and Progression of KRAS-Driven Pancreatic Neoplasias: A Dissertation

Pancreatic ductal adenocarcinoma (PDAC), the most common form of pancreatic cancer, develops through progression of premalignant pancreatic intraepithelial neoplasias (PanINs). In mouse-models, KRAS-activation in acinar cells induced an acinar-to-ductal metaplasia (ADM), and mutation of the Kras oncogene is believed to initiate PanIN formation. ADM is also promoted by pancreatic injury, which cooperates with activated KRAS to stimulate PanIN and PDAC formation from metaplastic ducts.
Our lab, and others, have shown that the downstream PI3K/AKT pathway is important for KRAS-mediated proliferation and survival in vitro and in vivo. Prior studies have demonstrated that full activation of AKT requires both PDK1- mediated phosphorylation of AKTT308 and mTOR complex 2 (mTORC2)-mediated phosphorylation of AKTS473. Given the importance of the PI3K/AKT signaling axis, I hypothesized that mTORC2 is required for KRAS-driven pancreatic tumorigenesis and investigated this relationship in mice by combining pancreasspecific expression of an activated KRASG12D molecule with deletion of the essential mTORC2 subunit RICTOR.
In the context of activated KRAS, Rictor-null pancreata developed fewer PanIN lesions; these lesions lacked mTORC2 signaling and their proliferation and progression were impaired. Higher levels of nuclear cyclin dependent kinase inhibitors (CDKIs) were maintained in Rictor-null lesions, and nuclear BMI1, a known regulator of the CDKI Cdkn2a, inversely correlated with their expression.Rictor was not required for KRAS-driven ADM following acute pancreatitis, however the inverse correlation between CDKIs and BMI1 was maintained in this system. Treatment of PDX-Cre;KRASG12D/+;Trp53R172H/+ mice with an mTORC1/2 inhibitor delayed tumor formation, and prolonged the survival of mice with late stage PDAC. Knockdown of Rictor in established PDAC cell lines impaired proliferation and anchorage independent growth supporting a role for mTORC2 in fully transformed cells.
These data suggest that mTORC2 cooperates with activated KRAS in the initiation and progression of PanIN lesions and is required for the transformation and maintenance of PDAC. My work illustrates phenotypic differences between pancreatic loss of Rictor and PDK1 in the context of KRAS, broadens our understanding of this signaling node and suggests that mTORC2 may potentially be a viable target for PDAC therapies.

Identiferoai:union.ndltd.org:umassmed.edu/oai:escholarship.umassmed.edu:gsbs_diss-1824
Date28 March 2016
CreatorsDriscoll, David R.
PublishereScholarship@UMassChan
Source SetsUniversity of Massachusetts Medical School
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMorningside Graduate School of Biomedical Sciences Dissertations and Theses
RightsCopyright is held by the author, with all rights reserved.

Page generated in 0.0091 seconds