This thesis demonstrates that graphene produced by liquid-phase exfoliation can be co-deposited with a polymerie semiconductor for the fabrication of thin film field-effect transistors. The introduction of graphene to the n-type polymeric matrix enhances not only the electrical characteristics of the devices, but also the ambipolar behavior and the hole transport in particular. This provides a prospective pathway for the application of graphene composites for logic circuits.The same approach of blending was adopted to enhance the electrical characteristics of an amorphous p-type polymer semiconductor by addition of an unprecedented solution processable ultra-narrow graphene nanoribbon. GNRs form percolation pathway for the charges resulting in enhanced deviee performance in daras weil as under illumination therefore paving the way for applications in (opto)electronics.Finally, multifunctional photoresponsive devices were examined by introducing photochromic molecules exposing different substituents into small molecule or polymeric semiconductor films that were found to affect the photoswitching behavior.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-01070648 |
Date | 19 June 2014 |
Creators | El Gemayel, Mirella |
Publisher | Université de Strasbourg |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | English |
Type | PhD thesis |
Page generated in 0.0019 seconds