Return to search

Compression automatique de phrases : une étude vers la génération de résumés / Automatic sentence compression : towards abstract summarization

Cette étude présente une nouvelle approche pour la génération automatique de résumés, un des principaux défis du Traitement de la Langue Naturelle. Ce sujet, traité pendant un demi-siècle par la recherche, reste encore actuel car personne n’a encore réussi à créer automatiquement des résumés comparables, en qualité, avec ceux produits par des humains. C’est dans ce contexte que la recherche en résumé automatique s’est divisée en deux grandes catégories : le résumé par extraction et le résumé par abstraction. Dans le premier, les phrases sont triées de façon à ce que les meilleures conforment le résumé final. Or, les phrases sélectionnées pour le résumé portent souvent des informations secondaires, une analyse plus fine s’avère nécessaire.Nous proposons une méthode de compression automatique de phrases basée sur l’élimination des fragments à l’intérieur de celles-ci. À partir d’un corpus annoté, nous avons créé un modèle linéaire pour prédire la suppression de ces fragments en fonction de caractéristiques simples. Notre méthode prend en compte trois principes : celui de la pertinence du contenu, l’informativité ; celui de la qualité du contenu, la grammaticalité, et la longueur, le taux de compression. Pour mesurer l’informativité des fragments,nous utilisons une technique inspirée de la physique statistique : l’énergie textuelle.Quant à la grammaticalité, nous proposons d’utiliser des modèles de langage probabilistes.La méthode proposée est capable de générer des résumés corrects en espagnol.Les résultats de cette étude soulèvent divers aspects intéressants vis-à- vis du résumé de textes par compression de phrases. On a observé qu’en général il y a un haut degré de subjectivité de la tâche. Il n’y a pas de compression optimale unique mais plusieurs compressions correctes possibles. Nous considérons donc que les résultats de cette étude ouvrent la discussion par rapport à la subjectivité de l’informativité et son influence pour le résumé automatique. / This dissertation presents a novel approach to automatic text summarization, one of the most challenging tasks in Natural Language Processing (NLP). Until now, no one had ever created a summarization method capable of producing summaries comparable in quality with those produced by humans. Even many of state-of-the-art approaches form the summary by selecting a subset of sentences from the original text. Since some of the selected sentences might still contain superfluous information, a finer analysis is needed. We propose an Automatic Sentence Compression method based on the elimination of intra-phrase discourse segments. Using a manually annotated big corpus, we have obtained a linear model that predicts the elimination probability of a segment on the basis of three simple three criteria: informativity, grammaticality and compression rate. We discuss the difficulties for automatic assessment of these criteria in documents and phrases and we propose a solution based on existing techniques in NLP literature, one applying two different algorithms that produce summaries with compressed sentences. After applying both algorithms in documents in Spanish, our method is able to produce high quality results. Finally, we evaluate the produced summaries using the Turing test to determine if human judges can distinguish between human-produced summaries and machine-produced summaries. This dissertation addresses many previously ignored aspects of NLP, namely the subjectivity of informativity, the sentence compression in Spanish documents, and the evaluation of NLP using the Turing test.

Identiferoai:union.ndltd.org:theses.fr/2013AVIG0195
Date30 September 2013
CreatorsMolina Villegas, Alejandro
ContributorsAvignon, Torres-Moreno, Juan-Manuel, Sierra, Gerardo, SanJuan, Eric
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0107 seconds