This thesis applies a novel method of change detection, the Landsat Image Stack Trend Analysis method to the monitoring of retrogressive thaw slumps in the Richardson Mountains, NWT. This method represents a significant improvement upon previous methods of thaw slump monitoring, which utilized air photos and high-resolution satellite imagery. This method applies Tasseled Cap brightness, wetness and greenness indices to Landsat TM/ETM images acquired between 1985 and 2011 and analyzes the temporal change of each pixel for the different indices values. This method is useful in retrogressive thaw slump monitoring in two ways. First, by creating a map showing the linear change over time from 1985 to 2011, retrogressive thaw slumps can be easily identified, as they are more dynamic than the surrounding tundra. In total, 251 thaw slumps were identified within an area of roughly 18 000km2. Second, thaw slump activity, from initiation, growth and stabilization can be studied by plotting the annual vegetation index pixel values of adjacent pixels in a thaw slump. This method allows for the efficient extraction of annual thaw slump headwall retreat rates, provided the availability of cloud-free imagery. The retreat rates of 16 slumps were extracted, which were found to have an average annual retreat rate of 11.8 m yr-1.
Identifer | oai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/30679 |
Date | January 2014 |
Creators | Brooker, Alexander |
Contributors | Lacelle, Denis |
Publisher | Université d'Ottawa / University of Ottawa |
Source Sets | Université d’Ottawa |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0017 seconds