Return to search

Géométrie et arithmétique explicites des variétés abéliennes et applications à la cryptographie

Les principaux objets étudiés dans cette thèse sont les équations décrivant le morphisme de groupe sur une variété abélienne, plongée dans un espace projectif, et leurs applications en cryptographie. Notons g sa dimension et k son corps de définition. Ce mémoire est composé de deux parties. La première porte sur l'étude des courbes d'Edwards, un modèle pour les courbes elliptiques possédant un sous-groupe de points k-rationnels cyclique d'ordre 4, connues en cryptographie pour l'efficacité de leur loi d'addition et la possibilité qu'elle soit définie pour toute paire de points k-rationnels (loi d'addition k-complète). Nous en donnons une interprétation géométrique et en déduisons des formules explicites pour le calcul du couplage de Tate réduit sur courbes d'Edwards tordues, dont l'efficacité rivalise avec les modèles elliptiques couramment utilisés. Cette partie se conclut par la génération, spécifique au calcul de couplages, de courbes d'Edwards dont les tailles correspondent aux standards cryptographiques actuellement en vigueur. Dans la seconde partie nous nous intéressons à la notion de complétude introduite ci-dessus. Cette propriété est cryptographiquement importante car elle permet d'éviter des attaques physiques, comme les attaques par canaux cachés, sur des cryptosystèmes basés sur les courbes elliptiques ou hyperelliptiques. Un précédent travail de Lange et Ruppert, basé sur la cohomologie des fibrés en droite, permet une approche théorique des lois d'addition. Nous présentons trois résultats importants : tout d'abord nous généralisons un résultat de Bosma et Lenstra en démontrant que le morphisme de groupe ne peut être décrit par strictement moins de g+1 lois d'addition sur la clôture algébrique de k. Ensuite nous démontrons que si le groupe de Galois absolu de k est infini, alors toute variété abélienne peut être plongée dans un espace projectif de manière à ce qu'il existe une loi d'addition k-complète. De plus, l'utilisation des variétés abéliennes nous limitant à celles de dimension un ou deux, nous démontrons qu'une telle loi existe pour leur plongement projectif usuel. Finalement, nous développons un algorithme, basé sur la théorie des fonctions thêta, calculant celle-ci dans P^15 sur la jacobienne d'une courbe de genre deux donnée par sa forme de Rosenhain. Il est désormais intégré au package AVIsogenies de Magma. / The main objects we study in this PhD thesis are the equations describing the group morphism on an abelian variety, embedded in a projective space, and their applications in cryptograhy. We denote by g its dimension and k its field of definition. This thesis is built in two parts. The first one is concerned by the study of Edwards curves, a model for elliptic curves having a cyclic subgroup of k-rational points of order 4, known in cryptography for the efficiency of their addition law and the fact that it can be defined for any couple of k-rational points (k-complete addition law). We give the corresponding geometric interpretation and deduce explicit formulae to calculate the reduced Tate pairing on twisted Edwards curves, whose efficiency compete with currently used elliptic models. The part ends with the generation, specific to pairing computation, of Edwards curves with today's cryptographic standard sizes. In the second part, we are interested in the notion of completeness introduced above. This property is cryptographically significant, indeed it permits to avoid physical attacks as side channel attacks, on elliptic -- or hyperelliptic -- curves cryptosystems. A preceeding work of Lange and Ruppert, based on cohomology of line bundles, brings a theoretic approach of addition laws. We present three important results: first of all we generalize a result of Bosma and Lenstra by proving that the group morphism can not be described by less than g+1 addition laws on the algebraic closure of k. Next, we prove that if the absolute Galois group of k is infinite, then any abelian variety can be projectively embedded together with a k-complete addition law. Moreover, a cryptographic use of abelian varieties restricting us to the dimension one and two cases, we prove that such a law exists for their classical projective embedding. Finally, we develop an algorithm, based on the theory of theta functions, computing this addition law in P^15 on the Jacobian of a genus two curve given in Rosenhain form. It is now included in AVIsogenies, a Magma package.

Identiferoai:union.ndltd.org:theses.fr/2011AIX22069
Date27 September 2011
CreatorsArène, Christophe
ContributorsAix-Marseille 2, Kohel, David R.
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0032 seconds