Spelling suggestions: "subject:"theta functions"" "subject:"pheta functions""
1 |
Matrix representation for partitions and Mock Theta functionsBagatini, Alessandro January 2016 (has links)
Neste trabalho, com base em representações por matrizes de duas linhas para alguns tipos de partição (algumas já conhecidas e outras novas), identificamos propriedades sugeridas por classificá-las de acordo com a soma dos elementos de sua segunda linha. Esta soma sempre fornece alguma propriedade da partição relacionada. Se considerarmos versões sem sinal de algumas funções Mock Theta, seu termo geral pode ser interpretado como função geradora para algum tipo de partição com restrições. Para retornar aos coeficientes originais, é possível definir um peso para cada matriz e depois somá-las para contá-los. Uma representação análoga para essas partições nos permite observar propriedades sobre elas, novamente por meio de uma classificação referente à soma dos seu elementos da segunda linha. Esta seriação é feita por meio de tabelas criadas pelo software matemático Maple, as quais nos sugerem padrões e identidades relacionadas com outros tipos de partições conhecidas e, muitas vezes, encontrando uma fórmula fechada para contá-las. Tendo as conjecturas obtidas, elas são provadas por meio de bijeções entre conjuntos ou por contagem. / In this work, based on representations by matrices of two lines for some kind of partition (some already known and other new ones), we identify properties suggested by classifying them according to the sum of its second line. This sum always provides some properties of the related partition. If we consider unsigned versions of some Mock Theta Functions, its general term can be interpreted as generating function for some kind of partition with restrictions. To come back to the original coefficients, you can set a weight for each array and so add them to evaluate the coefficients. An analogous representation for partitions allows us to observe properties, again by classificating them according to the sum of its elements on the second row. This classification is made by means of tables created by mathematical software Maple, which suggest patterns, identities related to other known types of partitions and often, finding a closed formula to count them. Having established conjectured identities, all are proved by bijections between sets or counting methods.
|
2 |
Clifford algebras and Shimura's lift for theta-series /Andrianov, Fedor A. January 2000 (has links)
Thesis (Ph. D.)--University of Chicago, Dept. of Mathematics, June 2000. / Includes bibliographical references. Also available on the Internet.
|
3 |
Analytic representations of quantum systems with Theta functionsEvangelides, Pavlos January 2015 (has links)
Quantum systems in a d-dimensional Hilbert space are considered, where the phase spase is Z(d) x Z(d). An analytic representation in a cell S in the complex plane using Theta functions, is defined. The analytic functions have exactly d zeros in a cell S. The reproducing kernel plays a central role in this formalism. Wigner and Weyl functions are also studied. Quantum systems with positions in a circle S and momenta in Z are also studied. An analytic representation in a strip A in the complex plane is also defined. Coherent states on a circle are studied. The reproducing kernel is given. Wigner and Weyl functions are considered.
|
4 |
Matrix representation for partitions and Mock Theta functionsBagatini, Alessandro January 2016 (has links)
Neste trabalho, com base em representações por matrizes de duas linhas para alguns tipos de partição (algumas já conhecidas e outras novas), identificamos propriedades sugeridas por classificá-las de acordo com a soma dos elementos de sua segunda linha. Esta soma sempre fornece alguma propriedade da partição relacionada. Se considerarmos versões sem sinal de algumas funções Mock Theta, seu termo geral pode ser interpretado como função geradora para algum tipo de partição com restrições. Para retornar aos coeficientes originais, é possível definir um peso para cada matriz e depois somá-las para contá-los. Uma representação análoga para essas partições nos permite observar propriedades sobre elas, novamente por meio de uma classificação referente à soma dos seu elementos da segunda linha. Esta seriação é feita por meio de tabelas criadas pelo software matemático Maple, as quais nos sugerem padrões e identidades relacionadas com outros tipos de partições conhecidas e, muitas vezes, encontrando uma fórmula fechada para contá-las. Tendo as conjecturas obtidas, elas são provadas por meio de bijeções entre conjuntos ou por contagem. / In this work, based on representations by matrices of two lines for some kind of partition (some already known and other new ones), we identify properties suggested by classifying them according to the sum of its second line. This sum always provides some properties of the related partition. If we consider unsigned versions of some Mock Theta Functions, its general term can be interpreted as generating function for some kind of partition with restrictions. To come back to the original coefficients, you can set a weight for each array and so add them to evaluate the coefficients. An analogous representation for partitions allows us to observe properties, again by classificating them according to the sum of its elements on the second row. This classification is made by means of tables created by mathematical software Maple, which suggest patterns, identities related to other known types of partitions and often, finding a closed formula to count them. Having established conjectured identities, all are proved by bijections between sets or counting methods.
|
5 |
Matrix representation for partitions and Mock Theta functionsBagatini, Alessandro January 2016 (has links)
Neste trabalho, com base em representações por matrizes de duas linhas para alguns tipos de partição (algumas já conhecidas e outras novas), identificamos propriedades sugeridas por classificá-las de acordo com a soma dos elementos de sua segunda linha. Esta soma sempre fornece alguma propriedade da partição relacionada. Se considerarmos versões sem sinal de algumas funções Mock Theta, seu termo geral pode ser interpretado como função geradora para algum tipo de partição com restrições. Para retornar aos coeficientes originais, é possível definir um peso para cada matriz e depois somá-las para contá-los. Uma representação análoga para essas partições nos permite observar propriedades sobre elas, novamente por meio de uma classificação referente à soma dos seu elementos da segunda linha. Esta seriação é feita por meio de tabelas criadas pelo software matemático Maple, as quais nos sugerem padrões e identidades relacionadas com outros tipos de partições conhecidas e, muitas vezes, encontrando uma fórmula fechada para contá-las. Tendo as conjecturas obtidas, elas são provadas por meio de bijeções entre conjuntos ou por contagem. / In this work, based on representations by matrices of two lines for some kind of partition (some already known and other new ones), we identify properties suggested by classifying them according to the sum of its second line. This sum always provides some properties of the related partition. If we consider unsigned versions of some Mock Theta Functions, its general term can be interpreted as generating function for some kind of partition with restrictions. To come back to the original coefficients, you can set a weight for each array and so add them to evaluate the coefficients. An analogous representation for partitions allows us to observe properties, again by classificating them according to the sum of its elements on the second row. This classification is made by means of tables created by mathematical software Maple, which suggest patterns, identities related to other known types of partitions and often, finding a closed formula to count them. Having established conjectured identities, all are proved by bijections between sets or counting methods.
|
6 |
Analytic representations of quantum systems with Theta functionsEvangelides, Pavlos January 2015 (has links)
Quantum systems in a d-dimensional Hilbert space are considered, where
the phase spase is Z(d) x Z(d). An analytic representation in a cell S in the
complex plane using Theta functions, is defined. The analytic functions have
exactly d zeros in a cell S. The reproducing kernel plays a central role in
this formalism. Wigner and Weyl functions are also studied.
Quantum systems with positions in a circle S and momenta in Z are also
studied. An analytic representation in a strip A in the complex plane is also
defined. Coherent states on a circle are studied. The reproducing kernel is
given. Wigner and Weyl functions are considered.
|
7 |
The geometry on a step 3 Grushin modelCalin, Ovidiu, Der-Chen, Chang January 2004 (has links)
In this article we study the geometry associated with the sub-elliptic operator ½ (X²1 +X²2), where X1 = ∂x and X2 = x²/2 ∂y are vector fields on R². We show that any point can be connected with the origin by at least one geodesic and we provide an approximate formula for the number of the geodesics between the origin and the points situated outside of the y-axis. We show there are in¯nitely many geodesics between the origin and the points on the y-axis.
|
8 |
Algorithmic approaches to Siegel's fundamental domain / Approches algorithmiques du domaine fondamental de SiegelJaber, Carine 28 June 2017 (has links)
Siegel détermina un domaine fondamental à l'aide de la réduction de Minkowski des formes quadratiques. Il donna tous les détails concernant ce domaine pour le genre 1. C'est la détermination du domaine fondamental de Minkowski présentée comme deuxième condition et la condition maximal height présentée comme troisième condition, qui empêchent la précision exacte de ce domaine pour le cas général. Les derniers résultats ont été obtenus par Gottschling pour le genre 2 en 1959. Elle est depuis restée inexplorée et mal comprise notamment les différents domaines de Minkowski. Afin d'identifier ce domaine fondamental pour le genre 3, nous présentons des résultats concernant sa troisième condition. Chaque fonction abélienne peut être écrite en termes de fonctions rationnelles des fonctions thêta et de leurs dérivées. Cela permet l'expression de la solution des systèmes intégrables en fonction des fonctions thêta. Ces solutions sont pertinentes dans la description de surfaces de vagues d'eau, de l'optique non linéaire. Deconinck et Van Hoeij ont éveloppé et mis en oeuvre des algorithmes pour construire la matrice de Riemann et Deconinck et al. ont développé le calcul des fonctions thêta correspondantes. Deconinck et al. ont utilisé l'algorithme de Siegel pour atteindre approximativement le domaine fondamental de Siegel et ont adopté l'algorithme LLL pour trouver le vecteur le plus court. Alors que nous utilisons ici un nouvel algorithme de réduction de Minkowski jusqu'à dimension 5 et une détermination exacte du vecteur le plus court pour des dimensions supérieures. / Siegel determined a fundamental domain using the Minkowski reduction of quadratic forms. He gave all the details concerning this domain for genus 1. It is the determination of the Minkowski fundamental domain presented as the second condition and the maximal height condition, presented as the third condition, which prevents the exact determination of this domain for the general case. The latest results were obtained by Gottschling for the genus 2 in 1959. It has since remained unexplored and poorly understood, in particular the different regions of Minkowski reduction. In order to identify Siegel's fundamental domain for genus 3, we present some results concerning the third condition of this domain. Every abelian function can be written in terms of rational functions of theta functions and their derivatives. This allows the expression of solutions of integrable systems in terms of theta functions. Such solutions are relevant in the description of surface water waves, non linear optics. Because of these applications, Deconinck and Van Hoeij have developed and implemented al-gorithms for computing the Riemann matrix and Deconinck et al. have developed the computation of the corresponding theta functions. Deconinck et al. have used Siegel's algorithm to approximately reach the Siegel fundamental domain and have adopted the LLL reduction algorithm to nd the shortest lattice vector. However, we opt here to use a Minkowski algorithmup to dimension 5 and an exact determination of the shortest lattice vector for greater dimensions.
|
9 |
An analytic representation of weak mutually unbiased basesOlupitan, Tominiyi E. January 2016 (has links)
Quantum systems in the d-dimensional Hilbert space are considered. The mutually unbiased bases is a deep problem in this area. The problem of finding all mutually unbiased bases for higher (non-prime) dimension is still open. We derive an alternate approach to mutually unbiased bases by studying a weaker concept which we call weak mutually unbiased bases. We then compare three rather different structures. The first is weak mutually unbiased bases, for which the absolute value of the overlap of any two vectors in two different bases is 1/√k (where k∣d) or 0. The second is maximal lines through the origin in the Z(d) × Z(d) phase space. The third is an analytic representation in the complex plane based on Theta functions, and their zeros. The analytic representation of the weak mutually unbiased bases is defined with the zeros examined. It is shown that there is a correspondence (triality) that links strongly these three apparently different structures. We give an explicit breakdown of this triality.
|
10 |
Values of Ramanujan's Continued Fractions Arising as Periodic Points of Algebraic FunctionsSushmanth Jacob Akkarapakam (16558080) 30 August 2023 (has links)
<p>The main focus of this dissertation is to find and explain the periodic points of certain algebraic functions that are related to some modular functions, which themselves can be represented by continued fractions. Some of these continued fractions are first explored by Srinivasa Ramanujan in early 20th century. Later on, much work has been done in terms of studying the continued fractions, and proving several relations, identities, and giving different representations for them.</p>
<p><br></p>
<p>The layout of this report is as follows. Chapter 1 has all the basic background knowledge and ingredients about algebraic number theory, class field theory, Ramanujan’s theta functions, etc. In Chapter 2, we look at the Ramanujan-Göllnitz-Gordon continued fraction that we call v(τ) and evaluate it at certain arguments in the field K = Q(√−d), with −d ≡ 1 (mod 8), in which the ideal (2) = ℘<sub>2</sub>℘′<sub>2</sub> is a product of two prime ideals. We prove several identities related to itself and with other modular functions. Some of these are new, while some of them are known but with different proofs. These values of v(τ) are shown to generate the inertia field of ℘<sub>2</sub> or ℘′<sub>2</sub> in an extended ring class field over the field K. The conjugates over Q of these same values, together with 0, −1 ± √2, are shown to form the exact set of periodic points of a fixed algebraic function ˆF(x), independent of d. These are analogues of similar results for the Rogers-Ramanujan continued fraction. See [1] and [2]. This joint work with my advisor Dr. Morton, is submitted for publication to the New York Journal.</p>
<p><br>
In Chapters 3 and 4, we take a similar approach in studying two more continued fractions c(τ) and u(τ), the first of which is more commonly known as the Ramanujan’s cubic continued fraction. We show what fields a value of this continued fraction generates over Q, and we describe how the periodic points for described functions arise as values of these continued fractions. Then in the last chapter, we summarise all these results, give some possible directions for future research as well as mentioning some conjectures.</p>
|
Page generated in 0.0816 seconds