Return to search

Influence of operating parameters and formulation additives on the physical properties, surface energetics and aerosol performance of spray dried salbutamol sulphate powders.

Liu Hua. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (leaves 139-143). / Abstracts in English and Chinese. / Table of Contents --- p.I / Acknowledgement --- p.VII / Abstract --- p.VIII / Abstract (Chinese) --- p.X / List of Tables --- p.XV / List of Figures --- p.XXIV / List Symbols and Abbreviations / Chapter Chapter One --- Introduction / Chapter 1.1. --- Rationale of study --- p.2 / Chapter 1.2. --- Drug Delivery to the lungs --- p.5 / Chapter 1.3. --- Particle transport and deposition mechanisms --- p.8 / Chapter 1.4. --- Factors affecting particulate interactions --- p.9 / Chapter 1.4.1. --- Particle size --- p.9 / Chapter 1.4.2. --- Particle shape --- p.10 / Chapter 1.4.3. --- Surface texture --- p.10 / Chapter 1.4.4. --- Surface energy --- p.11 / Chapter 1.4.5. --- Contact area --- p.12 / Chapter 1.4.6. --- Relative humidity --- p.12 / Chapter 1.4.7. --- Electrical properties --- p.13 / Chapter 1.5. --- Fine powder production technologies applicable to dry powder inhalation formulations --- p.13 / Chapter 1.5.1. --- Batch crystallization and micronization --- p.14 / Chapter 1.5.2. --- Spray drying --- p.15 / Chapter 1.5.3. --- Supercritical fluid crystallization --- p.17 / Chapter 1.6. --- Physical characterization of aerosol powders --- p.18 / Chapter 1.6.1. --- Microscopy and particle size analysis --- p.19 / Chapter 1.6.2. --- Powder X-ray diffractometry --- p.19 / Chapter 1.6.3. --- Thermal analysis --- p.20 / Chapter 1.6.4. --- In-vitro deposition assessment --- p.20 / Chapter 1.6.5. --- Surface energy measurement by inverse gas chromatography (IGC) --- p.21 / Chapter 1.7. --- Scope of study --- p.22 / Chapter Chapter Two --- Materials and Methods / Chapter 2.1. --- Materials --- p.25 / Chapter 2.2. --- Equipment --- p.25 / Chapter 2.3. --- Methods --- p.27 / Chapter 2.3.1. --- Determination of aqueous solubility of salbutamol sulphate in water --- p.27 / Chapter 2.3.2. --- Preparation of spray-dried salbutamol sulphate powders under different operating conditions --- p.27 / Chapter 2.3.3. --- Preparation of spray-dried salbutamol sulphate powders at various lecithin concentrations --- p.30 / Chapter 2.3.4. --- Preparation of spray-dried salbutamol sulphate powders at various oleic acid concentrations --- p.32 / Chapter 2.3.5. --- Physical characterization of spray-dried salbutamol sulphate powders --- p.34 / Chapter 2.3.5.1. --- Scanning electron microscopy --- p.34 / Chapter 2.3.5.2. --- Specific surface area determination --- p.34 / Chapter 2.3.5.3. --- Particle size distribution measurements --- p.35 / Chapter 2.3.5.4. --- Water content determination --- p.36 / Chapter 2.3.5.5. --- Isothermal water vapour sorption studies --- p.37 / Chapter 2.3.5.6. --- Powder X-ray diffraction --- p.37 / Chapter 2.3.5.7. --- Thermal analysis --- p.38 / Chapter 2.3.5.8. --- Surface energy measurement by inverse gas chromatography --- p.39 / Chapter 2.3.5.8.1. --- Calculation of surface thermodynamic parameters --- p.40 / Chapter 2.3.5.8.1.1. --- Standard Free Energy of Adsorption and Related Thermodynamic Parameters --- p.40 / Chapter 2.3.5.8.1.2. --- Dispersive Component of Surface Free Energy and Related Thermodynamic Parameters --- p.41 / Chapter 2.3.5.8.1.3. --- Specific Interactions and Associated Acid-Base Properties --- p.42 / Chapter 2.3.5.9. --- In-vitro deposition measurement by multi-stage liquid impinger --- p.43 / Chapter Chapter Three --- Results and discussion / Chapter 3.1. --- Influence of spray drying operating parameters --- p.46 / Chapter 3.1.1. --- Drying temperature --- p.46 / Chapter 3.1.1.1. --- "Particle size, particle morphology, and specific surface area" --- p.46 / Chapter 3.1.1.2. --- "Crystallinity, moisture sorption and thermal behaviour" --- p.53 / Chapter 3.1.1.3. --- Surface thermodynamic properties --- p.60 / Chapter 3.1.1.4. --- Aerodynamic properties and in-vitro deposition --- p.64 / Chapter 3.1.2. --- Feed solution concentration --- p.67 / Chapter 3.1.2.1. --- "Particle size, particle morphology and specific surface area" --- p.69 / Chapter 3.1.2.2. --- "Crystallinity, moisture sorption and thermal behaviour" --- p.69 / Chapter 3.1.2.3. --- Surfacethermodynamicproperties --- p.70 / Chapter 3.1.2.4. --- Aerodynamic properties and in-vitro deposition --- p.70 / Chapter 3.1.3. --- Feed speed --- p.72 / Chapter 3.1.3.1. --- "Particle size, particle morphology, and specific surface area" --- p.72 / Chapter 3.1.3.2. --- "Crystallinity, moisture sorption and thermal behaviour" --- p.73 / Chapter 3.1.3.3. --- Surfacethermodynamicproperties --- p.73 / Chapter 3.1.3.4. --- Aerodynamic properties and in-vitro deposition --- p.73 / Chapter 3.2. --- Influence of formulation additives --- p.78 / Chapter 3.2.1. --- Influence of lecithin as additive --- p.78 / Chapter 3.2.1.1. --- "Particle morphology, particle size and specific surface area" --- p.79 / Chapter 3.2.1.2. --- "Crystallinity, moisture sorption and thermal behaviour" --- p.84 / Chapter 3.2.1.3. --- Surfacethermodynamicproperties --- p.90 / Chapter 3.2.1.4. --- Aerodynamic properties and in-vitro deposition --- p.94 / Chapter 3.2.2. --- Influence of oleic acid as additive --- p.101 / Chapter 3.2.2.1. --- "Particle morphology, particle size and specific surface area" --- p.101 / Chapter 3.2.2.2. --- "Crystallinity, moisture sorption and thermal behaviour" --- p.106 / Chapter 3.2.2.3. --- Surfacethermodynamicproperties --- p.123 / Chapter 3.2.2.4. --- Aerodynamic properties and in-vitro deposition --- p.127 / Chapter Chapter Four --- Conclusion and Future Work / Chapter 4.1. --- Conclusion --- p.134 / Chapter 4.1.1. --- Influence of spray drying operating parameters --- p.134 / Chapter 4.1.2. --- Influence of formulation additives --- p.135 / Chapter 4.2. --- Future Work --- p.137 / References --- p.139

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_324052
Date January 2002
ContributorsLiu, Hua., Chinese University of Hong Kong Graduate School. Division of Pharmacy.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, xxvi, 143 leaves : ill. ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0027 seconds