There are a number of impurity elements present in sulphide ores that can have a deleterious effect on the properties of the final copper metal product. In this thesis, an equilibrium distribution technique was used to determine the thermodynamic behaviour of selenium and tellurium in molten slags used in copper production. Calcium ferrite based slags and copper or silver alloy were equilibrated in magnesia crucibles at temperatures of 1200 to 1400 °C and oxygen partial pressures of 10-11 to 10-0.68 atm. Under conditions typical of those employed during copper converting, the minor elements were found to enter the slag as negatively charged species. The partitioning of selenium and tellurium to the slag was greatest at high temperature, low oxygen partial pressure and at highest concentration of basic oxide (CaO or BaO). The experimentally derived data were combined with published information to calculate the selenide and telluride capacities of the slag, and also to generate fundamental thermodynamic activity data for selenium and tellurium in the slag phase. It was found that the activity coefficients of selenium and tellurium were independent of their concentration in the slag over the range studied, but were strongly dependent on the temperature, slag chemistry and oxidation state of the slag. Experiments were also designed and carried out to determine what effect the presence of iron oxide and its oxidation state has on the behaviour of selenium in the slag. A series of experiments involving iron oxide additions to a calcium aluminate slag was conducted under increasingly oxidising conditions to assess the effect of total iron on the selenide capacity as the dominant oxidation state of iron in the slag changed. It was shown that at a constant ratio of CaO:Al2O3, the selenide capacity increased with total iron in the slag. However, the effect on the selenide capacity did not appear any more significant as the Fe3+:Fe2+ ratio changed in a particular direction. 4 Another series of experiments was carried out with iron calcium silicate slags to determine the stability of phases within the slag, and how this affected the equilibrium distribution and activity coefficient of selenium in the slag. A number of solid phases were identified and their composition determined by scanning electron microscopy, energy dispersive spectroscopy and electron microprobe analysis. The composition and minor element content of the remaining liquid was calculated using a thermodynamic model. From this it was found that the capacity of the liquid slag has a region of independence against slag chemistry, before increasing strongly with increasing lime content to the calcium ferrite composition. Some of the implications of this work are discussed with reference to the practicality of adjusting the process variables in a large-scale industrial process for the purpose of managing minor element content of the molten phases. Considerations include the effect on copper recovery and rate of wear of furnace refractory materials.
Identifer | oai:union.ndltd.org:ADTP/185555 |
Date | January 2007 |
Creators | Johnston, Murray |
Publisher | University of Western Australia. School of Biomedical, Biomolecular and Chemical Sciences |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | Copyright Murray Johnston, http://www.itpo.uwa.edu.au/UWA-Computer-And-Software-Use-Regulations.html |
Page generated in 0.0014 seconds