Return to search

Structure, Function and Evolution of Filamentous Fungal Telomerase RNA

abstract: Telomerase ribonucleoprotein is a unique reverse transcriptase that adds telomeric DNA repeats to chromosome ends. Telomerase RNA (TER) is extremely divergent in size, sequence and has to date only been identified in vertebrate, yeast, ciliate and plant species. Herein, the identification and characterization of TERs from an evolutionarily distinct group, filamentous fungi, is presented. Based on phylogenetic analysis of 69 TER sequences and mutagenesis analysis of in vitro reconstituted Neurospora telomerase, we discovered a conserved functional core in filamentous fungal TERs sharing homologous structural features with vertebrate TERs. This core contains the template-pseudoknot and P6/P6.1 domains, essential for enzymatic activity, which retain function in trans. The in vitro reconstituted Neurospora telomerase is highly processive, synthesizing canonical TTAGGG repeats. Similar to Schizosaccharomycetes pombe, filamentous fungal TERs utilize the spliceosomal splicing machinery for 3' processing. Neurospora telomerase, while associating with the Est1 protein in vivo, does not bind homologous Ku or Sm proteins found in both budding and fission yeast telomerase holoenzyme, suggesting a unique biogenesis pathway. The development of Neurospora as a model organism to study telomeres and telomerase may shed light upon the evolution of the canonical TTAGGG telomeric repeat and telomerase processivity within fungal species. / Dissertation/Thesis / Ph.D. Biochemistry 2011

Identiferoai:union.ndltd.org:asu.edu/item:9259
Date January 2011
ContributorsQi, Xiaodong (Author), Chen, Julian (Advisor), Ghirlanda, Giovanna (Committee member), Chaput, John (Committee member), Arizona State University (Publisher)
Source SetsArizona State University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral Dissertation
Format190 pages
Rightshttp://rightsstatements.org/vocab/InC/1.0/, All Rights Reserved

Page generated in 0.002 seconds