Recentemente, surgiu na literatura uma solução analítica das equações de cinética pontual que considera a reatividade como função do tempo, utilizando o método da decomposição. O presente trabalho dá um passo a frente, considerando as equações de cinética pontual em conjunto com efeitos de realimentação de temperatura. Mas, primeiro, uma breve introdução do modelo de cinética pontual e dos aspectos relevantes desta abordagem são apresentados. O trabalho prossegue acrescentando a realimentação de temperatura como uma perturbação de primeira ordem na equação reatividade, e através de manipulações algébricas, o conjunto de equações de cinética pontual passa a ser expresso como uma equação diferencial não linear de segunda ordem. Esta equação é, então, resolvida pelo método de decomposição, ou seja, expandindo as variáveis dependentes como séries infinitas, construindo-se então um sistema recursivo que permite calcular cada um dos termo destas séries. A não linearidade é tratada utilizando os polinômios Adomian. Os resultados aqui obtidos são comparados com a literatura, apresentando variações percentuais máximas da ordem de [0,1%]. Faz-se uma breve análise da convergência e da estabilidade da solução, usando um método baseado no critério de Lyapunov. / An analytical solution of the point kinetics equations to calculate reactivity as a function of time by the decomposition method has recently appeared in the literature. The present work goes one step forward, by considering the neutron point kinetics equations together with temperature feedback effects. But first, a brief introduction of the point kinetics model and the relevant aspects of this approach are presented. The work proceeds adding the temperature feedback as a first order perturbation in the reactivity equation, and using algebraic manipulation, the set of point kinetics equations becomes expressed as a non linear second order differential equation. This equation is then solved by the decomposition method, that is, expanding the dependent variables as infinite series, building a recursive system that allows the evaluation of each term of these series. The non linearity is treated using the Adomian polynomials. The results obtained are compared with literature, with maximum percentage changes of about [0,1%]. A brief analysis of the convergence and stability of the solution is made, using a method based on the Lyapunov criterion.
Identifer | oai:union.ndltd.org:IBICT/oai:www.lume.ufrgs.br:10183/37386 |
Date | January 2011 |
Creators | Silva, Jerônimo Júnior Araújo |
Contributors | Vilhena, Marco Tullio Menna Barreto de, Alvim, Antonio Carlos Marques |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0051 seconds