Neuropeptidases are responsible for degradation of signaling peptides in the central nervous system and periphery. Some neuropeptidases have also been shown to play a role as part of the cell’s hydrolytic machinery responsible for breaking down proteins and peptides into amino acids, and these enzymes therefore influence small peptide availability for antigen presentation. A better understanding of how neuropeptidases recognize their substrates could lead to therapeutics that modulate the activity of these important enzymes. Alternatively, re-engineering these enzymes to selectively hydrolyze undesirable peptides could make them attractive as therapeutics themselves. A key question in understanding the activity of these enzymes is how they are able to recognize a variety of seemingly unrelated amino acid sequences as cleavage sites. We are investigating the basis for this general substrate recognition in neuropeptidases using thimet oligopeptidase (TOP) as a model. Crystal structures of TOP in complex with a variety of substrates and inhibitors shed light on the mechanisms underlying substrate recognition and pave the way for re-targeting substrate recognition in these enzymes.
Nano test tube particles have been proposed as a means of delivering therapeutics such as enzymes. However, the template synthesis method for nano test tube production does not produce therapeutic quantities. In order to take full advantage of re-engineered neuropeptidases a new method for nano test tube synthesis has been developed. We show that a non-destructive template synthesis methodology can be applied to produce nano test tube particles in quantities useful for therapeutic enzyme immobilization.
Identifer | oai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:biochem_etds-1005 |
Date | 01 January 2012 |
Creators | Wagner, Jonathan Mark |
Publisher | UKnowledge |
Source Sets | University of Kentucky |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations--Molecular and Cellular Biochemistry |
Page generated in 0.0015 seconds