Transit times through hydrologic systems vary in time, but the nature of that variability is not well understood. Transit times variability was investigated in a 1 m(3) sloping lysimeter, representing a simplified model of a hillslope receiving periodic rainfall events for 28 days. Tracer tests were conducted using an experimental protocol that allows time-variable transit time distributions (TTDs) to be calculated from data. Observed TTDs varied with the storage state of the system, and the history of inflows and outflows. We propose that the observed time variability of the TTDs can be decomposed into two parts: internal variability associated with changes in the arrangement of, and partitioning between, flow pathways; and external variability driven by fluctuations in the flow rate along all flow pathways. These concepts can be defined quantitatively in terms of rank StorAge Selection (rSAS) functions, which is a theory describing lumped transport dynamics. Internal variability is associated with temporal variability in the rSAS function, while external is not. The rSAS function variability was characterized by an inverse storage effect, whereby younger water is released in greater proportion under wetter conditions than drier. We hypothesize that this effect is caused by the rapid mobilization of water in the unsaturated zone by the rising water table. Common approximations used to model transport dynamics that neglect internal variability were unable to reproduce the observed breakthrough curves accurately. This suggests that internal variability can play an important role in hydrologic transport dynamics, with implications for field data interpretation and modeling.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/622147 |
Date | 09 1900 |
Creators | Kim, Minseok, Pangle, Luke A., Cardoso, Charléne, Lora, Marco, Volkmann, Till H. M., Wang, Yadi, Harman, Ciaran J., Troch, Peter A. |
Contributors | Univ Arizona, Biosphere2, Univ Arizona, Dept Soil Water & Environm Sci, Univ Arizona, Dept Hydrol & Water Resources, Department of Geography and Environmental Engineering; Johns Hopkins University; Baltimore Maryland USA, Department of Geosciences; Georgia State University; Atlanta Georgia USA, Biosphere2, University of Arizona; Tucson Arizona USA, Biosphere2, University of Arizona; Tucson Arizona USA, Biosphere2, University of Arizona; Tucson Arizona USA, Department of Soil, Water and Environmental Science; University of Arizona; Tucson Arizona USA, Department of Geography and Environmental Engineering; Johns Hopkins University; Baltimore Maryland USA, Biosphere2, University of Arizona; Tucson Arizona USA |
Publisher | AMER GEOPHYSICAL UNION |
Source Sets | University of Arizona |
Language | English |
Detected Language | English |
Type | Article |
Rights | © 2016. American Geophysical Union. All Rights Reserved. |
Relation | http://doi.wiley.com/10.1002/2016WR018620 |
Page generated in 0.0025 seconds